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Abstract— The advent of sequencing technologies
allows to reassess the relationship between species in the
hierarchically organized tree of life with respect to pat-
terns in their genomic signatures. Self-Organizing Maps
(SOM) in Euclidean and hyperbolic space are applied to
genomic signatures of 350 different organisms of the two
superkingdoms Bacteria and Archaea to link the sequence
signature space to pre-defined taxonomic levels, i.e. the
tree of life. In the hyperbolic space the SOMs are trained
by either the standard algorithm (HSOM) or in a hierarchi-
cal manner (H2SOM), which is naturally supported by a
lattice structure in hyperbolic space. Genomic signatures
containing estimated statistics of oligonucleotide of certain
lengths are used as features for training. For evaluating
the SOM performances, distances between organisms in
the feature space, on the SOM grid and in the taxonomy
tree are compared pair-wise using a correlation measure
and Spearman’s ρ. We show that the structure recovered
using the different SOMs reflects the gold standard of cur-
rent taxonomy. The distances between species are better
preserved when using the HSOM or H2SOM which makes
the hyperbolic space better suited for embedding the high
dimensional genomic signatures.

1 Introduction

All existing organisms have evolved from one common an-
cestor according to the theory of evolution proposed by
Darwin in 1859 [1]. Studying the finches that inhabit the
Galapagos archipelago, Darwin envisaged the fact that evo-
lutionary forces can drive the bearing of new species from
existing ones. Since then, the ultimate goal of many biol-
ogists is to obtain a hierarchical classification or taxonomy
able to map the evolutionary relationships between species.
Traditionally, evolutionary relationships were established
using morphological characteristics (e.g. number of legs),
still valid in the analysis of fossil record. However, with the
advent of sequencing technologies yielding a vast amount
of molecular data, it has become possible to reassess the
relationship between species [2]. The evolutionary rela-

tionship between all existing species can be modeled and
visualized by the “tree like structure” which is known as
the tree of life. Superkingdom, Phylum, Class, Order and
Genus represent the most commonly used taxonomic cat-
egories with Superkingdom being the most general class
(Figure 1).

Using sequence alignment molecular biologists can es-
timate the differences between DNA sequences of certain
species of interest, in order to estimate the degree of their
relationship, namely sequence similarity (the closer their
relationship the more similar they should be). Convention-
ally, only part of the genome (often a single gene) is used
for this purpose such as ribosomal RNA molecules, gene
content, gene order, protein domain content, etc. However,
many pitfalls in sequence alignment can be encountered
such as saturation of the underlying model of evolution
(when far related species are compared), sampling of rep-
resentative sequences, lateral gene transfer, or recombina-
tion. All these lead to very disparate results [3]. Moreover,
multiple sequence alignments are computationally very ex-
pensive.

Nowadays, with the gargantuan amount of molecular
information it is very valuable to count on methods that
can make use of the information contained in the whole
genome and do not depend on sequence alignment, but nev-
ertheless can readily reconstruct the relationship between
species and help in the evaluation of trends in genome evo-
lution. New alignment-free approaches that take into ac-
count general characteristics of the genomes disregarding
prior identification of functional regions have been devel-
oped [4, 5, 6, 7]. But this is still a challenge in computa-
tional biology. An intriguing characteristic that enables to
capture evolutionary relationships between species is the
genomic signature which is defined as the whole set of
short sequences of oligonucleotide of certain length [8].
Genomic signatures are species-specific and can be mea-
sured in any part of the genome [9, 10, 11] allowing direct
comparisons along the entire genome.

In this study we explore the suitability of several SOMs
for reconstructing the hierarchical relation of whole ge-
nomic sequences. Hereby, compositional sequence prop-
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Figure 1: A subset of all 350 organisms of the superkingdoms Archaea and Bacteria is displayed. Due to space limitations,
some categories are left out in the display which is indicated by dashed lines. The organisms are categorized on five
different levels called Superkingdom, Phylum, Class, Order, and Genus. On the first level, the organisms are categorized
in the two different superkingdoms Archaea and Bacteria. On the second level, all organisms of the superkingdom Archaea
are subdivided in the three Phyla Crenarchaeota, Euryarchaeota and Nanoarchaeota. All organisms of the superkingdom
Bacteria are subdivided in 15 different Phyla (from Actinobacteria to Thermotogae). Finer subdivisions are obtained by
the categories Class, Order and Genus on the levels three to five.

erties (genomic signature) are exploited. One way to find
an answer is to apply dimension reduction techniques based
on unsupervised learning like the SOM, to learn and project
the structure of a large set of genomic signatures. Our
data set of 350 organisms represents a vast majority of
organisms sequenced up-to-date from the two domains of
life. Genomic signatures are uniquely obtained from each
complete sequenced genome without using any additional
knowledge about the organisms. For each organism, the
features are combined in a vector that is used to train a
SOM in Euclidean and hyperbolic space. We evaluate if
the structure recovered from the different SOMs reflects the
gold standard of current taxonomy. Results are presented
for the SOM, HSOM and H2SOM. By comparing ranks of
distances in the feature space, on the grid and in the tree of

life, we show that the structure of the trained SOMs using
only whole genome sequence data is biologically sound to
the widely accepted tree of life based on RNA molecules.
When the distances are directly compared, both the HSOM
and H2SOM perform better than the standard SOM, which
makes them better suited for embedding of the high di-
mensional genomic signatures. Additionally, the H2SOM
allows considerable speed-ups of several orders of magni-
tudes which makes it well suited to deal with the increasing
number of sequenced organisms and for the testing of dif-
ferent feature spaces.
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2 Material and Methods
In this paper we consider 350 different organisms that are
included either in the Bacteria or the Archaea superking-
dom. This palette of organisms represents a vast major-
ity of the microbial world sequenced up-to-date. For each
genome, we measure the divergency from expectation of
oligonucleotide patterns of length k, which is given as the
ratio observed vs. expected. Each complete genomic se-
quence is encoded as a vector which entries are the diver-
gencies on oligonucleotide patterns of length k. For each
genome, feature vectors are computed as follows:

2.1 Feature vector computation from se-
quenced genome data

Let Σ be the alphabet of nucleotides Σ = {A,C, G, T}.
Let o be an oligonucleotide of length k = |o|, with oi ∈ Σ.
Let s(l) be the genomic sequence of organism l (with 1 ≤
l ≤ 350) of length |s(l)| each and s

(l)
i ∈ Σ. For notation

simplicity we consider only one sequence s ≡ s(l) in the
following.
For a sequence s, the probability to observe a certain nu-
cleotide η ∈ Σ can be computed by

p(η) =
1
|s|

|s|∑
i=1

h(si, η) (1)

with the indicator function

h(si, η) =
{

1 if si = η
0 else (2)

There are |Σ||o| = 4k possible oligonucleotides of length
k, e.g. an oligonucleotide of length k = 3 can be one
of the following sequences: o(1) = AAA, o(2) =
AAG, . . . , o(4k) = TTT . The sequence feature vec-
tors are generated to encode the enhanced contrast between
over- and underrepresented oligonucleotides in a sequence.
The expectation value for a certain oligonucleotide o in the
sequence s can be estimated by

E[o] ≈ |s|
|o|∏
i=1

p(oi) (3)

Let O[o] be the number of observed oligonucleotides o in
the same sequence s. The contrast is performed by compu-
tation of the score

g(o) =


0 if O[o] = 0

O[o]
E[o] if O[o] > E[o]

−E[o]
O[o] if O[o] ≤ E[o]

(4)

The scores of all possible oligonucleotides for the sequence
s are combined in one vector of dimension 4k.

g(s) =
(
g(o(1)), g(o(2)), . . . , g(o(4k))

)T

(5)

b)a)

Figure 2: Construction of the H2SOM: The H2SOM is ini-
tialized with the root node of the hierarchy placed at the
origin of IH2. Then the nb children nodes of the first sub
hierarchy are equidistantly placed around the center node
(a)). During a first phase, the top level ring of nodes is
trained in the standard self-organized fashion. After a fixed
training interval, each node in the periphery is expanded as
indicated in b).

The feature vector of the sequence s is defined as

f(s) =
g(s)
‖g(s)‖

(6)

2.2 Data
The complete set of 350 genomes included in the bacteria
and archaea superkingdoms are obtained from the SEED
database 1 [12]. The complete taxonomic information from
the set of organisms evaluated in this survey are obtained
from the taxonomy database located in the US National
Center for Biotechnology Information (NCBI) [13].

The considered 350 organisms are categorized on differ-
ent levels in the tree of life. We consider five such cat-
egorizations (Figure 1). On the first level, the organisms
are categorized in two different superkingdoms archaea and
bacteria. On the second level, all organisms of the superk-
ingdom archaea are subdivided in the three phyla Crenar-
chaeota, Euryarchaeota and Nanoarchaeota. All organisms
of the superkingdom bacteria are subdivided in 15 different
phyla (from Actinobacteria to Thermotogae). Finer sub-
divisions are obtained by the categories order, class and
genus on the levels three to five.

2.3 The Hyperbolic Self Organizing Map
(HSOM)

In 1990, Kohonen introduced the Self-Organizing Map
(SOM) [14]. Since then, it has become a widely used tool
for exploratory data analysis. Typically, the SOM projects
data to a two-dimensional flat Euclidean space. However,
this does not always correlate with the intrinsic structure
of the considered data. Especially for hierarchically struc-
tured data, an exponentionally growing display is more ad-

1http://www.nmpdr.org/FIG/index.cgi
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equate, a property offered by hyperbolic space. Its uni-
form negative curvature results in a geometry such that the
size of a neighborhood around any point increases expo-
nentially with its radius R. In a hyperbolic SOM (HSOM)
this exponential scaling property has already successfully
been used to visualize high dimensional text data [15]. The
core idea of the HSOM is to employ a grid of nodes in
the hyperbolic plane IH2 which is then projected onto the
IR2 for inspection. The regular structure of formal neurons
used by the HSOM is based on a tessellation of IH2 with
equilateral triangles - for more details please refer to [16].

The HSOM is then formed in the standard self-
organizing manner: Each lattice node r carries a proto-
type vector wr ∈ RD from some D-dimensional feature
space. During the learning phase, in each training step a
best match node s is determined for a given input x by
s = argminr‖wr − x‖. The prototype vectors are then
adjusted according to the familiar rule

∆wr = ηh(r, s)(x−wr) (7)

with

h(r, s) = exp
(
−d2(r, s)

2σ2

)
, (8)

where h(r, s) is a Gaussian shaped function centered at the
winner node s and decaying with increasing node distance
d(r, s) on the hyperbolic lattice.

2.3.1 Hierarchically growing HSOM (H2SOM)

The H2SOM employs the same sort of regular lattice struc-
ture already used for the plain HSOM, but offers a hierar-
chically growing scheme: The H2SOM is initialized with
the root node of the hierarchy placed at the origin of IH2.
Then the nb children nodes of the first sub hierarchy are
equidistantly placed around the center node as shown in
Figure 2a). The radius of the first ring is chosen such,
that the hyperbolic distance of the first-level nodes to each
other is the same as their distance to the center node. The
“branching” factor nb determines how many nodes are gen-
erated at each level and how “fast” the network is reaching
out into the hyperbolic space. nb is lower bounded by 7,
but has no upper bound [17]. During a first phase, the top
level ring of nodes is trained in the standard self-organized
fashion. After a fixed training interval, each node in the
periphery is expanded as indicated in Figure 2b) and their
reference vectors become fixed. In a new learning phase
adaptation “moves” to the nodes of the new hierarchy level.
This scheme is repeated until a desired hierarchical level is
reached. Two advantages arise from this kind of training.
First, the build up hierarchy allows for a fast best match tree
search permitting speed-ups of several orders of magni-
tude, as compared with a standard SOM or HSOM search.
Second, the H2SOM forces the nodes in each ring to struc-
ture the data on different levels, i. e. hierarchies. In the first

step the primary structure of the data is captured when the
input data is projected to the nb nodes of the first ring. A
finer data categorization is obtained in the second step and
so on. Thus it may have great potential to truthfully project
data with an intrinsic hierarchical structure.

2.4 Evaluation measures
The correlation between distances, or Spearman’s ρ when
applied to distances can measure to which extent the dis-
tances of point pairs in two different spaces S1 and S2

are correlated. In our work, distances between organisms
can be computed in three different ways. First, the feature
space distance df

ij ∈ [0, 1] can be obtained by computing
the Euclidean distance d

(
f

(
s(i)

)
, f

(
s(j)

))
between two

organisms i and j in the feature space and normalizing it to
[0,1]. Second, a grid distance dg

ij ∈ [0, 1] can be obtained
by computing the minimal distance on the SOM grid be-
tween the two nodes to which the organisms i and j have
been mapped. The grid distances are normalized such that
the maximal possible distance on the grid is one. Third, the
taxonomy distance dt

ij ∈ [0, 1] of two organisms i and j is
defined as follows:

dt
ij =



0 if they have the genus in common
0.2 if they have the class in common
0.4 if they have the order in common
0.6 if they have the phylum in common
0.8 if they have the superkingdom in common
1 if they have nothing in common

For notation simplicity, let the distance vector d̃∗l ,
l = 1, . . . , n denote all distances d∗ij , i 6= j, n =
N(N−1)

2 , N = 350.

2.4.1 Correlation

The correlation c between the two distance vectors d̃1 and
d̃2 is defined as

c =
1
n

n∑
l=1

d̃1
l d̃

2
l (9)

c is bounded by [−1, 1]. c = 1 indicates a perfect cor-
relation between the two distance vectors whereas c = 0
indicates no correlation.

2.4.2 Topology Preservation

In [18], Spearman’s ρ was applied to compute the quality
of a metric topology preserving (MTP) transformation by
computing the linear correlation coefficient of ranks of dis-
tances in the feature space and the projected space. In fact,
Spearman’s ρ can be used for any two distance vectors d̃1

and d̃2 when defining it as the linear correlation coefficient
of the ranks Rl and Sl

ρSp =
∑

l(Rl − R̄)(Sl − S̄)√∑
l

(
Rl − R̄

)2
√∑

l

(
Sl − S̄

)2
(10)
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Figure 3: Spearman’s ρ between feature space distances and grid distances is displayed. A ρ ≈ 0.6 indicates that the
ranks of distances are very well preserved. This observation is rather independent of the oligonucleotide length and the
SOM used.
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Figure 4: The correlation between feature space distances and grid distances is shown. It can be seen that SOMs in
hyperbolic space better preserve the distances than the SOM in Euclidean space. The performance of the SOMs increases
with the oligonucleotide length.

where Rl and Sl are the ranks of the considered distance
vectors d̃1 and d̃2. ρSp is a measure for the global met-
ric preservation of a projection and is bounded by [-1,1].
ρSp = 1 indicates a complete metric preservation. As ρSp

decreases from one, the projection is becoming less MTP,
and ρSp = 0 indicates a complete random projection in
terms of distance preservation.

3 Results

A standard SOM, a HSOM, and a H2SOM are trained on
the data described in section 2.1. The features are de-
fined by oligonucleotides of length k ranging between 2
and 6 in five different datasets. All SOMs are trained
with 10000 training steps and a linear decreasing learning
rate (η1 = 0.9 to η10000 = 0.1) and neighborhood size
(σ1 = 10 to σ10000 = 1). All hyperbolic SOMs consist of
five rings with a branching factor nb = 8, resulting in 2281
nodes. The standard SOM is initialized using the eigen-
vectors of the first and second largest eigenvalue. Its di-
mension is determined by the relation between the first and
second largest eigenvalue such that the number of nodes is

approximately the same as in the hyperbolic SOMs. For
each dataset and for each training algorithm, the SOMs are
trained 10 times. The following two issues are analyzed:
To which extent does the structure of the grid correspond
to i) the structure in the feature space, and ii) the taxonomy?
To this end, we analyze the correlations between distances
(section 2.4.1) and correlations between ranks of distances
using Spearman’s ρ (section 2.4.2).
In Figure 3 Spearman’s ρ between feature space distances
and grid distances is displayed. A ρ ≈ 0.6 indicates that the
ranks of distances are very well preserved. This observa-
tion is rather independent of the oligonucleotide length and
the SOM used. When considering the direct correlation
of feature space distances and grid distances (Figure 4),
the SOMs in hyperbolic space better preserve the distances
than the SOM in Euclidean space. The performance of the
SOMs increases with the oligonucleotide length. The dif-
ference between Spearman’s ρ and the direct correlation
can be explained by the different distributions of distances
on the SOM grid. In Euclidean space the distribution of
node distances favors smaller distances whereas in the hy-
perbolic case the exponential scaling behavior of IH2 al-
lows a larger proportion of the nodes to have a rather large
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Figure 5: Spearman’s ρ between grid distances and taxonomy distances is shown. The slight positive ρSp indicates that
there is a link between the structure found by the SOMs and the taxonomy.
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Figure 6: The correlation between grid distances and taxonomy distances is displayed. The SOMs in hyperbolic space
preserve the distances better than the SOM in Euclidean space. This observation is independent of the oligonucleotide
length.

distance to each other. This feature allows the hyperbolic
SOM to better reflect the true distribution of distances in
the original high dimensional oligonucleotide space.
In Figure 5 Spearman’s ρ between grid distances and tax-
onomy distances is shown. The slight positive ρSp indi-
cates that there is a link between the structure found by
the SOMs and the taxonomy. When considering the direct
correlation between grid distances and taxonomy distances
(Figure 6), the SOMs in hyperbolic space preserve the dis-
tances better than the SOM in Euclidean space. This ob-
servation is independent of the oligonucleotide length. For
visual inspection, a randomly chosen HSOM trained with
oligonucleotides of length 4 and organisms colored accord-
ing to their position in the taxonomy tree is displayed using
the Poincaré projection (Figure 7). In Figure 7 a) the ori-
gin of the IH2 is centered. In Figure 7 b) to e) different
nodes of the HSOM (21, 39, 19, 1) are moved to the cen-
ter of the display. All other points of the IH2 are moved
accordingly allowing us to inspect various regions in the
hyperbolic space. The organisms are visualized as colored
circles at the node to which they are mapped. Each color
represents a genus as illustrated in Figure 1. The circle area
is proportional to the number of species that are mapped to

the node, but also decreases with the distance to the cen-
ter node. It can be seen that organisms are not randomly
mapped to the HSOM nodes, but that taxonomy related or-
ganisms are often mapped close to each other.

4 Discussion
We apply a standard SOM in Euclidean space, a hyper-
bolic SOM (HSOM) and a hierarchical hyperbolic SOM
(H2SOM) on genomic signatures of 350 different organ-
isms of the two superkingdoms Bacteria and Archaea. The
three different types of SOMs are evaluated by comparing
Spearman’s ρ and correlations of feature space distances,
grid distances and taxonomy distances. We find that the rel-
atively simple features obtained from genomic signatures
are sufficient to allow a reasonable SOM projection. By
comparing Spearman’s ρ and correlations of distances in
the feature space, on the grid and in the tree of life, we show
that the structure of the trained SOMs using whole genome
sequence data is biologically sound to the widely accepted
tree of life based on RNA molecules. When the distances
are directly compared, both the HSOM and H2SOM per-
form better than the standard SOM, which makes the hy-
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Figure 7: For visual inspection, a randomly chosen HSOM trained with oligonucleotides of length 4 and organisms
colored according to their position in the taxonomy tree is displayed using the Poincaré projection. In a) the origin of the
IH2 is centered. In b) to e) different nodes of the HSOM (21, 39, 19, 1) are moved to the center of the display. All other
points of the IH2 are moved accordingly allowing us to inspect various regions in the hyperbolic space. The organisms
are visualized as colored circles at the node to which they are mapped. Each color represents a genus as illustrated in
Figure 1. The circle area is proportional to the number of species that are mapped to the node, but also decreases with the
distance to the center node. It can be seen that organisms are not randomly mapped to the HSOM nodes, but taxonomy
related organisms are often mapped close to each other.
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perbolic SOMs better suited for visualization issues. Ad-
ditionally, the H2SOM allows considerable speed-ups of
several orders of magnitudes. This makes it well suited to
deal with the increasing number of sequenced organisms
and for the testing of different feature spaces or combina-
tions of feature spaces.
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