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Abstract— This paper addresses the use of a
stochastic optimization method called the Cross Entropy
(CE) Method in the improvement of a recently proposed
H2MLVQ (Harmonic to minimum LVQ ) algorithm , this
algorithm was proposed as an initialization insensitive vari-
ant of the well known Learning Vector Quantization (LVQ)
algorithm. This paper has two aims, the first aim is the
use of the Cross Entropy (CE) Method to tackle the initial-
ization sensitiveness problem associated with the original
(LVQ) algorithm and its variants and the second aim is to
use a weighted norm instead of the Euclidean norm in or-
der to select the most relevant features. The results in this
paper indicate that the CE method can successfully be ap-
plied to this kind of problems and efficiently generate high
quality solutions. Also, good competitive numerical results
on several datasets are reported.

1 Introduction

Prototype based learning has been an ongoing research
problem for last decades and it has been approached in var-
ious ways. It has been gaining more interest lately due to
its ability to generate fast and intuitive classification models
with good generalization capabilities. One prominent algo-
rithm of Prototype based learning algorithms is a Learning
Vector Quantization (LVQ) introduced by Kohonen ([2]),
this algorithm and its variants have been intensively stud-
ied because of their robustness, adaptivity and efficiency.
The idea of LVQ is to define class boundaries based on
prototypes, a nearest neighbor rule and a winner-takes-it-
all paradigm. The standard LVQ has some drawbacks: i)
basically LVQ adjusts the prototypes using heuristic error
correction rules, ii) it does not directly minimize an objec-
tive function, thus it cannot guarantee the convergence of
the algorithm which leads to instability behavior especially
in the case of overlapped data, iii) the results are strongly
dependent on the initial positions of the prototypes. In or-
der to improve the standard LVQ algorithm several modifi-
cations were proposed by the author him self (see[3]) and
by other researchers.

A good description of the state of the art of Learning
Vector Quantization and its variants is given in a recent

survey (see [5]). Standard LVQ does not distinguish be-
tween more or less informative features due to the usage
of the Euclidean distance, to improve that, extensions from
various authors are suggested (see [4] [6] and [7]). The
previous approaches obey to heuristic update for relevance
and prototypes vectors are adapted using simple percep-
tron learning which may cause problems for non linear
separable data. For these reasons another variant based
on minimisation of cost function using stochastic gradient
descent method was proposed by Sato and Yamada (see
[14]). Hammer and al suggested to modify the GLVQ cost
function by using weighted norm instead of Euclidean dis-
tance. This algorithm, called Generalized Relevances LVQ,
showed in several tasks competitive results compared to
SVM and it had been proved that GRLVQ can be consid-
ered as a large margin classifier (see [8]).

Although the GRLVQ algorithm guarantees convergence
and shows better classification performances than other
LVQ algorithms, it suffers from initialization sensitiveness
due to the presence of numerous local minima incurred as
a result of the use of gradient descent method especially
for multi-modal problems. The same authors proposed an-
other algorithm (Supervised Relevance Neural Gas SRNG)
to tackle initialization sensitiveness (see[9]). They propose
to combine the GRLVQ with the neighborhood oriented
learning in the neural gas (NG). The algorithm mentioned
above required choosing several parameters such as learn-
ing rate, size of an update neighborhood. A suitable choice
of these parameters values may not always be evident and
also changed from one data set to another. In this paper,
we present an initialization insensitive H2MRLVQ which
is based on the well-known and efficient cross entropy (CE)
method [10]. We refer to this new algorithm as the Cross
Entropy Method (CEMH2MRLVQ).

The rest of the paper is structured as follows. In section
2, we introduce the basics of classification and prototype
learning; we review both the formulation of GLVQ and
H2MLVQ. In section 3, we explain how the CE method
can be considered as a stochastic global optimization pro-
cedure for H2MLVQ algorithm, In section 4, we present the
results of numerical experiments using our proposed algo-
rithm on some benchmark data sets and compare with the
results obtained using the H2MLVQ and GLVQ stochastic



gradient descent method. We conclude in section 5.

2 Problem statement

Machine learning can be formulated as searching for the
most adequate model describing a given data. A learning
machine may be seen as a function f (X ;θ) which trans-
forms objects from the the input space X to the output
space Y : f(X ;θ) : X −→ Y .

The data domain X and the set of target values Y are
determined by the definition of the problem for which
f(X ;θ) is constructed. The output of the function can be a
continuous value (for regression application) or can predict
a class label of the input object (for classification appli-
cation). The learning model f(X ;θ) usually depends on
some adaptive parameters θ sometimes also called free pa-
rameters. In this context, learning can be seen as a process
in which a learning algorithm searches for these parameters
θ, which solve a given task.

In supervised learning, the algorithm learns form the
data set S often called the ”training set” and consists of
N samples, (x, y) pairs, drawn independently identically
from a probability distribution p(x, y). We define the col-
lected data by S , {(x1, y1), (x2, y2), . . . , (xN , yN )}
where xi , [x1i, x2i, . . . , xdi]

T ∈ X and y ,
{yi}i=1,...,N , yi ∈ {1, . . . , L}. N , L denote the number
of records in the data set and the number of classes respec-
tively. In real applications xi ∈ X ⊂ Rd is a multidimen-
sional real vector.

In the Bayes decision theory the sanity behavior of the
classifier is usually measured by classification error, the so-
called overall loss (see [11]):

<(θ) , EX [L(f(x;θ)|x)] =
∫
x∈X

L(f(x;θ)|x)p(x)dx,

(1)
where L(f(x;θ)|x) is the expected loss defined by:

L(f(x;θ)|x) ,
∫
y∈Y

`(f(x;θ)|y)p(y|x)dy, (2)

where `(f(x;θ)|y) denotes the individual loss. By rewrit-
ing eq.(1), we have:

<(θ) =
∫
x,y∈X×Y

`(f(x;θ)|y)p(x, y)dxdy, (3)

more precisely

<(θ) =
L∑
k=1

p(y = k)
∫
x∈X

`(f(x;θ)|y)p(x|y = k)dx.

(4)
We assume training data drawn by some underlying joint
distribution p(x, y) which is in practice unknown. In real
applications, only a finite number of samples are available.

The loss functional <(θ) is usually replaced by the so-
called empirical loss functional computed as follows:

<emp(θ) =
1
N

N∑
i=1

L∑
k=1

`(f(xi;θ)|yi = k)1(yi = k),

(5)
1(.) is an indicator function such that 1(true) = 1
if the condition between the parentheses is satisfied or
1(false) = 0 if not.

2.1 GLVQ algorithm
It has been shown by Diamantini in [12] that traditional
LVQ (LVQ1) proposed by Kohonen does not minimize nei-
ther explicit risk function, nor the Bayes risk. In [13] Juang
proposed a learning scheme called minimum classification
error (MCE) approach that minimizes the expected loss
in Bayes decision theory by a gradient-descent procedure
(Generalized Probabilistic Descent). The MCE criterion is
defined using specific discriminant functions.

Let us consider wkj ∈ X is the jth prototype among
Pk vectors associated to class k = 1, . . . , L and θk ,
{wkj |j = 1, . . . , Pk} = W k is the collection of all pro-
totypes of the class k. The collection of all prototypes rep-

resenting all classes are defined as θ ,
L⋃
k=1

θk = W and

P =
L∑
l=1

Pl denotes the total number of prototypes.

As proposed by Sato and Yamada, the generalized LVQ
learning algorithm use the following discriminant function
µk(x;θ) defined by:

µk(x;θ) ,
dk(x;θ)− dl(x;θ)
dk(x;θ) + dl(x;θ)

, (6)

where dk(x;θ) is the square euclidian distance between x
and the closest prototype belonging to the same class of
x and dl(x;θ) is the squared Euclidean distance between
the input vector x and its best matching prototype vector
wlr with a different class label. This discriminant function
µk(x;θ) ∈ [−1, 1] ensure that if x is correctly classified to
class k then µk(x;θ) ≤ 0.

Introducing (6) in (5), the empirical loss minimized by
the MCE criterion is rewritten by:

<emp(θ) =
1
N

N∑
i=1

L∑
k=1

`(µk(xi;θ))1(yi = k), (7)

where `(µk(xi;θ)) = `(f(xi;θ)|y = k). and 1(.) is an
indicator function such that 1(true) = 1 if the condition
between the parentheses is satisfied or 1(false) = 0 if not.
`(µk(x;θ)) is a smoothed loss function instead of the 0−1
loss function of the Bayes decision theory, for example the
sigmoid function defined by:

`(z; ξ) ,
1

1 + e−ξz
, (8)
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where ξ is a scalar (which usually increases with time).
When t → ∞ the loss function will be identical to em-
pirical loss in bayes decision theory. From (7), the general
GLVQ cost function is expressed as:

FGLVQ(X;θ) =
N∑
i=1

`(µk(xi;θ))

=
N∑
i=1

1

1 + e−ξ(t)µk(xi;θ)
,

(9)

where X , {xi}i=1,...,N . Although the GLVQ algorithm
ensures convergence and exhibits better classification per-
formance than other LVQ algorithms.

2.2 H2MLVQ
In the H2MLVQ not only the two best prototypes (with the
same and different labels as the input sample) are updated,
but all prototypes with different degrees according to their
nearness to the input sample (see [1]). The authors pro-
posed to replace the distances dk and dl by harmonic aver-
age distances dHk and dHl , respectively, as follows:

dHk =
Nkdkmin

1 +
∑Nk
j=1,j 6=kmin(dkmin/‖xi − wj‖2)t

,

dHl =
Nldlmin

1 +
∑Nl
j=1,j 6=lmin(dlmin/‖xi − wj‖2)t

,

(10)

where Nk, Nl are the number of prototypes with the same
and different label with the sample xi, respectively, t grad-
ually changes from 1 to 0 as training proceeds. The mis-
classification measure µk(X,θ) is defined as:

µk(x;θ) ,
dHk (x;θ)− dHl (x;θ)
dHk (x;θ) + dHl (x;θ)

. (11)

The H2MLVQ cost function is expressed as:

FH2MLVQ(X,θ) =
N∑
i=1

1

1 + e−ξ(t)µk(xi,θ)
. (12)

2.3 Attribute weighing and H2MLVQ algo-
rithm

In general, prototype based classifiers are dependant on
the metric which is used to measure proximity, the perfor-
mance of this type of algorithms depends essentially on that
choice. The usual choice is the Euclidian metric which is
not always appropriate because it supposes that all the at-
tributes contribute equally in the classification. We will use
the same idea as Hammer and al in [5], they suggested to
replace the Euclidean metric by Weighted Euclidean metric
by introducing input weights λ , [λ1, λ2, . . . , λd]T ∈ Rd,

λi ≥ 0 to allow a different scaling of the inputs. They
substitute the Euclidean metric by its scaled variant in the
GLVQ formulation

dλ(a, b) , (a− b)TλI(a− b), (13)

where (a, b) ∈ X are two column vectors, I is identity
matrix.

From (6) the new formulation of the misclassification
measure µλk(x;θ) can be expressed as

µλk(x;θ) =
dλk(x;θ)− dλl (x;θ)
dλk(x;θ) + dλl (x;θ)

, (14)

where dλk(x;θ) and dλl (x;θ) are now the corresponding
weighted distances. Now the H2MRLVQ cost function is
computed as follows

FH2MRLVQ(x;θ) =
N∑
i=1

1

1 + e−ξ(t)µ
λ
k(xi;θ)

. (15)

In the next section we will present the Cross Entropy
Method to tackle the initialization sensitiveness problem
and to estimate the attribute’s weights.

3 Cross Entropy Method

The general optimization problem introduced in the GLVQ
and H2MLVQ formulation can be viewed as a task of find-
ing a best set of parametersW andλ that minimize the cor-
responding objective function. These optimization prob-
lems are typically quite difficult to solve; i.e. min

θ∈Θ
{F (θ)},

where θ ∈ Θ represents the vector of input variables, F (θ)
is the scalar objective function and Θ is the constraint set.
Many approaches exist to solve this kind of problems (Gra-
dient based procedures, random search, Meta heuristics,
model-based methods,. . . ) (see [16]).

As an alternative to the stochastic gradient descent al-
gorithm we consider the CE approach because it offers
good results for multi-extremal functional optimization
(see [17]). This method requires neither special form of
the objective function and its derivatives nor heuristic as-
sumptions.

We view the problem of minimization of cost function
(12) as a continuous multi-extremal optimization problem
with constraints. The cross-entropy (CE) method was in-
troduced by Rubinstein (see [10]) as an efficient method
for the estimation of rare-event probabilities and has been
successfully applied to a great variety of research areas (see
for example ([18],[19],[15],[20]). The main ideas of the CE
method are described in [21] and [15]. For this reason, in
this paper we only present features of CE that are relevant
to the problem hereby studied.
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The central idea of Cross Entropy (CE) is related to the
association of a stochastic problem to the original optimiza-
tion problem, called parameterized associated stochas-
tic problem (ASP) characterized by a density function
p(.;v),v ∈ V . The stochastic problem is solved by iden-
tifying the optimal importance sampling density p∗ which
minimizes the Kullback-Leibler distance (also called the
cross-entropy) between p and p∗. The CE method can be
viewed as an iterative method that involves two major steps
until convergence is reached:

(1) Generating samples according to p(.;v) and choosing
the elite of these samples.

(2) Updating the parameter v of the distribution family
on the basis of the elite samples, in order to produce a
better solution in the next iteration.

In this paper we will give a brief introduction of CE, the
reader can refer to [15] for a more detailed description of
the CE method.

Consider the following general cost function minimiza-
tion problem. Let Θ be a constraint set and θ ∈ Θ is a
a given vector. Let us denote the desired minimum of the
function F (θ) by γ?. The cost function minimization prob-
lem can be formulated by:

γ? = min
θ∈Θ

{F (θ)}. (16)

In other words, we seek an optimal solution γ? satisfying
F (θ?) ≤ F (θ), ∀θ ∈ Θ. The CE method transforms the
deterministic optimisation problem (16) to stochastic prob-
lem using a family of probability density functions (pdfs)
p (.;v) which depends on a reference parameter v ∈ V .
Consequently, the associated stochastic estimation problem
is

l(γ) , Pv (F (Θ) ≤ γ) = Ev
[
IF (Θ)≤γ

]
=
∫
I
F (θ)≤γp (.;v) dθ.

(17)

At each iteration t of the CE algorithm V random samples
are drawn on the basis of p (.;vt−1), then the new value of
vt is updated according to vt−1 and the best elite samples.
The update formula is especially simple if p (.;v) is be-
longing to Natural Exponential Function (NEF)(Gaussian,
Truncated Gaussian, Binomial,. . . ). Instead of updating the
parameter vector v̂t−1 to v̂t directly the smoothed updating
procedure is often used:

v̂t = αṽt + (1− α)v̂t−1, (18)

with 0 ≤ α ≤ 1 and ṽt is the solution of (17). This
smoothed adaptation (18) is used to reduce the probability
of the algorithm to get stuck in a local minima.

3.1 Cross Entropy Method for H2MRLVQ
optimisation

In order to link the H2MLVQ cost function minimization
(15) with the CE theory, we define the parameter θ as θ ,
{W ,λ}. Both W and λ are sampled from two sampling
distributions which belong to the NEF family in order to
simplify parameters update.

In this paper we take Truncated Gaussian and Dirich-
let distributions to estimate the prototypes and attribute’s
weights, respectively. That is, for each W l ,
{wlpq} p=1,...,d

q=1,...,P
(a d × P matrix) with l = 1, . . . , V , each

components wlpq are drawn from a Truncated Gaussian
such wlpq ∼ N t

(
mt
pq, (σ

t
pq)

2,ap, bp
)

where mt
pq de-

notes the average of pqth components at iteration t, (σtpq)
2

the variance and ap, bp denote a lower and upper bound-
ing box for each dimension containing all data respec-
tively. In practice, we choose ap = C min

j=1,...,N
{xjp}

and bp = C max
j=1,...,N

{xjp} with C ≥ 1. To sample at-

tribute’s weights we use the Dirichlet distribution. Let
λ , [λ1, λ2, . . . , λd]T a random vector whose elements
sum to 1. The density function of the Dirichlet distribution
with the parameter vector δ is:

λ(δ) ∼ Dir(δ1, δ2, . . . , δd) =
Γ(
∑
d δd)∏

d Γ(δd)

∏
d

λδd−1
d ,

(19)
where λd > 0,

∑
d λd = 1. The parameters

δ of the Dirichlet distribution can be estimated by
maximizing the log-likelihood function of given data.
The log-likelihood is convex in δ which guarantee a
unique optimum. To estimate δ, we use the sim-
ple and efficient iterative gradient descent method de-
scribed in minka’s paper (see [23]). The parameters(
M t , {mt

pq}, δ
t , {δtp},Σ

t , {(σtpq)2}
)

at iteration t
are updated via the sample mean and sample standard de-
viation of elite samples. The algorithm is summarized as
follows:

According to Kroese in [17] the performance CE method
is insensitive to the exact choice of parameters. The algo-
rithm is quite robust under the choice of the initial param-
eters, provided that the initial variances are chosen large
enough, ensuring at the beginning to cover all solutions
space.

To prevent the algorithm from being trapped in local op-
tima Kroese in [17] proposed to use dynamic smoothing
(20) where at each iteration the variance (σtpq)

2 is updated
using a smoothing parameter:

βt = β0 − β0

(
1− 1

t

)c
, (20)

where c is a small integer (typically between 5 and 15) and
β is a large smoothing constant (typically between 0.8 and
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(1) Choose some initial
{
M0,Σ0, δ0

}
for p =

1, . . . , d, q = 1, . . . , P . Set t = 1 (level counter).
(2) Draw samples W l ∼
N t
(
M (t−1),Σ(t−1),ap, bp

)
, λl ∼

Dir(δ(t−1)), l = 1, . . . , V .
(3) Compute Sl = FH2MRLVQ(X;θl) scores by ap-

plying eq.(15) ∀l.
(4) Sort Sl in ascending order and denote by I

the set of corresponding indices. Let us de-
note

(
m̃

(t−1)
pq , (σ̃(t−1)

pq )2
)

the mean and the vari-
ance of the best dρV e prototypes elite samples of

{W I(l)}, l = 1, . . . , dρV e respectively. The δ̃
t

is the corresponding the Dirichlet parameter fitted
on {δI(l)}.

(5) M̂
t

= αM̃
t
+(1−α)M̂

t−1
, Σ̂

t
= βtΣ̃

t
+(1−

βt)Σ̂
(t−1)

and δ̂
t

= αδ̃
t

+ (1− α)δ̂
(t−1)

(6) If convergence is reached or t = T (T denote the
final iteration), then stop; otherwise set t = t+ 1
and reiterate from step 2.

Figure 1: Cross Entropy Method for H2MRLVQ optimisa-
tion: CEMH2MRLVQ.

0.99). By using β instead of α the convergence to the de-
generate case has polynomial speed instead of exponential.

4 Experimental results
In this section, we applied both the CEMH2MRLVQ al-
gorithm with some machine learning algorithms (GLVQ,
H2MLVQ) to show the effectiveness of the proposed
method. Following standard procedure in experiments with
other published works, each data set is initially normalized
and algorithm parameters are selected as described in the
papers related to the algorithms described above. To ob-
tain meaningful comparisons against other published algo-
rithms and to assess the effectiveness of the proposed al-
gorithm, we used a stratified 10 fold cross-validation. We
tested these algorithms in real world data sets taken from
the public UCI repository [24] (see Table 1). For compari-
son we used the same data sets as in [1]. In particulary, we
used glass data set because it contains features with intrin-
sic within-class multi-modal structure. The parameters in
the algorithms were set as follows:

• GLVQ: ξ = 0.5, εk = 0.05, εl = 0.01 where εk
and εl are learning rates for nearest correct and wrong
prototype, respectively.
• H2MLVQ: ξ = 0.1, εk = 0.05, εl = 0.01. For these

two algorithms, the prototypes for different classes
were randomly initialized around the center of the cor-
responding classes. Number of prototypes per class is
set to four as in [1].

• For the CEMH2MRLVQ: V = 5N where N denote
the number of train samples, ξ = 0.1, ρ = 3.10e− 3,
β0 = 0.95, h = 5.10e − 6, q = 10, ε = 5.10e − 9 et
c = 50, C = 1.2. It is found empirically that when α
is between 0.6 and 0.9 it gives best results in our case
we choose α = 0.7.

For all algorithms the number of iterations is set to K =
600. We based our comparison on two criteria: the error
rate and optimal value of the cost function. Results are pre-
sented in Tables (2 and 3) respectively. We see in the Ta-
ble 2 that our algorithm outperforms the GLVQ algorithm
and shows slightly better performances than H2MLVQ. In
Table 3 we see that the CEMH2MRLVQ gives the lowest
value of the cost function which leads to high quality solu-
tions of the optimization problem. Compared to other al-
gorithms based on gradient descent, the CEMH2MRLVQ
is more demanding on computational cost of running. The
theoretical complexity of CE is an open problem still un-
der investigation, this complexity is partially depending on
the studied problem (see [22]). The computational com-
plexity of our algorithm is around O(dNPV ) in each it-
eration. The architecture of CE method algorithm being
inherently parallel, it requires to evaluate a cost function,
consequently the CE method can be accelerated by paral-
lelizing all these evaluations.

Table 1: List real world data sets used in comparaison be-
tween algorithms.

Name # Features # Patterns # Classes
Liver 6 345 2
Glass 9 214 6

Table 2: Recognition rates on real data sets. The format of
the numbers in this table is M ± S, where M is the mean
recognition rate, S is the standard deviation. For each data
set, the best method is described by the boldface.

Name GLVQ H2MLVQ CEMH2MRLVQ
(%) (%) (%)

Liver 57.45±9.82 59.41±4.42 62.29±5.04
Glass 60.34±7.40 63.66±8.37 66.55±7.18

Table 3: Optimal Cost Function Values. The format of the
numbers in this table is M ± S, where M is the mean Cost
Function Value, S is standard deviation.

Name H2MLVQ CEMH2MRLVQ
Liver 155.4469±0.076 155.3483±0.0093
Glass 97.8378±0.0139 97.7194±0.0053
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5 Attribute weighing estimation
Feature ranking is hard to compare because of the differ-
ences in data interpretation. In this section, we will be
concerned with the Iris data set. This is one of the best
known databases in the pattern recognition literature. The
data set contains three classes (Iris Setosa, Iris Versicolour,
and Iris Virginica) of 50 instances each. There are four
input attributes (sepal length, sepal width, petal length,
and petal width). The relevance vector that resulted af-
ter the experiment is [.1108 .1220 .2027 .5645] this result
points out that the most important features are the latest
two features. Our ranking is similar to GRLVQ [5] results
[.2353 .2193 .2704 .2750].

6 Conclusion
In this paper we considered solving the LVQ initialization
sensitiveness problem. We formulated it as a stochastic op-
timization problem and applied the CE method to solve it.
The suggested method was shown to be apt to deal well
with such problems. It produced recognition rates that were
fairly superior to other proposed methods. The main bene-
fit of the proposed method is its insensitivity to the choice
of its hyper parameters which is not the case of the other
methods (learning rate and size of an update neighborhood
(SRNG)). In general, the CE algorithm is efficient and easy
to implement. The CE can be seen as a stochastic method,
which gives CE the ability to find more global optima than
deterministic methods.
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