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Abstract— Working with five minutes data, we have

studied a number of trading rules based on the responses
of Kohonen’s Self Organizing Maps, evaluating the results
with both financial and statistical indicators, as well as by
comparison with classical buy and hold strategy. At the
current stage our major findings may be summarized as fol-
lows: a) Kohonen’s maps are helpful to localize profitable
intraday patterns, and b) they generally make possible to
achieve higher performances than common buy and hold
strategy.

1 Introduction

Starting from early 90’s a plenty of academic work has
been spent to analyze the potential of neural networks (NNs
since now on) to trade financial markets. During those
years almost every aspect of financial markets has been
explored by means of artificial neural networks: we have
learned that some neural architectures seem to work bet-
ter than others [17], and that NNs make possible to pick
up trading opportunities by monitoring market volatility
[8], or that some hybridisation with genetic algorithms can
help to achieve better results [2, 9]; additionally, NNs have
been proficiently combined with more traditional tools, like
moving averages [16], and other popular technical indica-
tors [10, 14]. It is then clear that, at the present state, NNs
applications in financial markets have reached a fully de-
veloped stage, with smaller space for new contributions to
the ongoing debate. However, we have focused on a rela-
tively lesser known topic, that is the profitability of intraday
activity driven by neural networks. Previous efforts mainly
concentrated in the FOREX (Foreign Exchange) market,
with applications of reinforcement learning and genetic al-
gorithms together with a collection of trading indicators
[10]. In addition, evolutionary neural trees have been ap-
plied to forecast high frequency returns of the Hang-Seng
index within the month of December 1998 [4] : in this
case the authors focused on the statistical accuracy of their
model, comparing its mean squared error, and its mean per-
centage error to those of two benchmarking series, gener-
ated by a random walk and by an AR(1) model.

Respect to the cited works, the novelty of our approach
may be briefly condensed as follows.

– Although a number of applications of nearest neigh-
bour methods are known on daily data[1, 6, 12, 13],
minor attention has been spent on intraday tradings[7].
With this in mind, we will use high–frequency data to
train Kohonen’s Self Organizing Maps (SOMs).

– We are interested to study if and how SOMs capabili-
ties can be employed both to exploit relevant temporal
patterns at intraday time frequencies, and to support
market timing activity, in the specific case to trade the
market one time unit in advance.

– Despite from classical approaches that focus on the
monovariate series of closing prices (or, sometimes,
of closing log–returns), SOMs will be trained with
intraday returns bars, i.e. the arrays whose compo-
nents are the returns on Open, High, Low, and Close
(OHLC) prices at the given time frequency. This
modus operandi is rather unexplored but, in our opin-
ion, very promising, because it allows a more efficient
use of the informative content of prices: instead of
estimating the embedding dimension on close prices
(which is generally employed to provide details about
the length of exploitable patterns in monovariate time
series), here we gain advantage by working at each
time t with the n–uples (the OHLC returns bars) of
realizations from four random variables that represent
all the available information to traders1.

– We will introduce a trading system whose rules are
based on Self–Organizing Maps responses, and we
will examine its capability to provide operators with
the timing of their intraday market activity (buy, sell,
or standby). In this context, the use of SOMs instead
of any other vector quantization method can be moti-
vated since the superior capabilities of SOMs (that we
are going to illustrate) for the joined action of features
selection and rule extraction. The performances will
be then monitored with many statistical and financial
indicators, and the results compared to those obtained
with the classical buy and hold strategy.

In the framework depicted above, what remains of the pa-
per is organized as follows. In Section 2, after describ-
ing the data we have employed, we will give details about
the SOMs–based trading rules that we have implemented.

1If we accept the classical assumption that prices discount all.



Section 3 will show and discuss the results obtained, while
Section 4 will conclude.

2 Data and methodology

2.1 A preliminar discussion about input
space features

In every market session, once fixed a time unit (say 5 min-
utes), the unit opening price is called Open, the closing
price is termed Close, while the highest and the lowest
prices recorded within such unit are known, respectively,
as the High (H) and the Low (L); financial practitioners are
then used to call OHLC bar the array containing the Open,
High, Low, and Close prices at the given time unit. Respect
to the more usual representation through monovariate data
(closing prices), this technique allows to represent every
traded asset in the market by four distinct points per time
unit: visually this corresponds to plot at each time t a bar (a
straight line) whose height depends on the range spanned
between Low and High; a horizontal line is put on the left–
hand side of the bar, in the proximity of the opening value,
and to the right of the bar, in the nearby of the closing value.
An example is illustrated in Figure 1, where we show the
5 minutes OHLC bars of the Italian financial index S&P
MIB, within a single daily session.

Figure 1: Five minutes bars of the S&P MIB index within the Italian
Stock Exchange during the 17 September 2004 session.

In our study we have considered the 5 minutes OHLC
bars for the S&P MIB index: this is the reference index
for derivatives products traded in the Italian market since
17 September 2004, when the older MIB302 has been re-
placed as benchmark for the Italian stock market. The data
were observed from the inception time of the index to 12
May 20063, for an overall amount of 43816 records. Dur-
ing this period the S&P MIB was characterized by various

2MIB30 is the acronym for Milano Indice Borsa: it has been the former
leading indicator of the Italian Stock Exchange, built as a weighted sum
of price levels from earlier 30 italian stocks by capitalisation.

3Source: Datastream.

uptrend and downtrend movements: after an upward ten-
dence (from 09/17/2004 to 02/15/2005), the index has gone
sideward from 02/15/2005 to 05/17/2005; hence it turned
again to bullish (i.e. up, from 05/18/2005 to 09/30/2005).
Finally, after a short bearish (down) stage (from 09/30/2005
to 10/28/2005), a new bull market episode characterized
the index from 10/28/2005 to 05/12/2006. With a view
to the various performances exhibited by the S&P MIB
bars, we have divided the raw data into five blocks labelled
B01, B02, B03, B04 and B05, corresponding to bullish
(B01, B03 and B05), bearish (B04), and sideward (B02)
behaviours of the index (see Table 1 for full details).

Name Type Starting Final Size
HLOC bar HLOC bar

B01 Upward 09/17/04 h: 905 02/15/05 h: 1220 10926× 4
B02 Sideward 02/15/05 h: 1225 05/17/05 h: 1740 6616× 4
B03 Upward 05/18/04 h: 905 09/30/05 h: 1200 10020× 4
B04 Downward 09/30/05 h: 1205 10/28/05 h: 1135 2074× 4
B05 Upward 10/28/05 h: 1140 05/12/06 h: 1740 14178× 4

Table 1: Main details about the blocks into which S&P MIB index bars
have been splitted. For each block we have reported the prevailing trend
features, together with the initial and final bars within the observation
period, and the overall sample length.

Each block in turn, has been splitted into two subsets:
earlier 70% of bars has been used to build the in–sample
data to train the SOMs; the remaining 30% of every block
served to construct the out of sample set. Respect to the
original raw OHLC bars, we have done nothing but apply-
ing the classical definition of return:

r(t) = log
P (t)

P (t− 1)
(1)

where the argument of log in Eq.( 1) has been replaced with
the corresponding Open, High, Low and Close values at
time t and t − 1. In this way, instead of the scalar r(t), at
each time t we have got an array, the return bar: rb(t) ={

log O(t)
O(t−1) , log H(t)

H(t−1) , log L(t)
L(t−1) , log C(t)

C(t−1)

}
.

To simplify the discussion further, from now on we will
indicate the returns bars by different labels, according to
the set they belong to, so that we will distinguish returns
bars from the neural space (rbN ), obtained through the
training of the maps, by those in the input space, belonging
to the in–sample (rbIN ), or to the test set (rbOoS).

2.2 The SOM based trading rules
In order to give robustness to our study, we have consid-
ered for each sub–sample a system of 100 Self Organizing
Maps [15]: results are then to be intended on average.

SOMs dimensions have been chosen after a preliminary
data snooping procedure, during which we examined the
sensitivity of convergence indexes4 to changes in the num-
ber of neurons; Table 2 details the SOMs dimensional fea-
tures chosen at last for each block of data.

4basically: those described in [5] and in [3].
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Block In Set Test Set Nr of Maps
Name Size Size Maps Dimensions
B01 7647× 4 3278× 4 100 29× 15
B02 4630× 4 1985× 4 100 26× 13
B03 7013× 4 3006× 4 100 28× 15
B04 1451× 4 623× 4 100 20× 10
B05 9924× 4 4254× 4 100 25× 11

Table 2: Dimensional features of SOMs employed in our study

After the random initialization, the maps have been
trained with bars from the in–sample set. The training stage
was carried out for 50 epochs: the number of epochs was
chosen as the number at which the already cited conver-
gence indexes exceed the threshold of 60%.

Our trading system is based on a simple sequence of
tasks that are illustrated in Figure 2: the flowchart to the left
hand side shows the overall procedure, while in the right
hand side we detail the organization of branches 1 and 2.
Note that the first branch of the procedure is iterated over
the input set (whose sample length is assumed equal to z)
for a number of epochs depending on the level reached by
the convergence indexes: this means that the input patterns
are presented to the map more than once. The second part
of the procedure, on the other hand, runs once in sequence
from t = 1 to t = v− 1, where v is the length of the out of
sample set.

Figure 2: Flowcharts describing how our procedure is organized.

More precisely:

(1) The first branch performs the training of SOMs with
the in–sample set. In this way, each returns bar of
the input set (rbIN) is associated to a correspond-

ing pattern (the best matching unit) in the neural
space (rbN). Once the 60% convergence threshold
is reached, the second part of the procedure activates.

(2) We arrange the rbN patterns in the Kohonen’s map
into three groups of signals: Sell (−1), Buy (+1), and
Standby (0), according to proper rules that we will de-
scribe in a while.

(3) We perform the mapping:

rbOoS(t) → {rb∗N (t), st(t+1)}, ∀t = 1, . . . , v−1

where v is the test set length, and st(t+1) is the signal
for trades at time t + 1, obtained in t from the arrays
of the neural space. In other words, each rbOoS(t) is
coupled to the best matching unit rb∗N (t) in the neu-
ral space (according to the Euclidean distance metric),
and to the related signal that will be employed to trade
one bar in advance.

The way the rbN patterns are grouped is important for
the overall procedure, since it can affect the signals sug-
gested to operators. In our study, we have considered three
different grouping strategies.

– Rule 1. (R01) Let us assume to have rb(t) ∈ rbOOS .
We indicate by X(t) the set:

X(t) = {x : x ∈ rb∗N (t) ∧ x > 0} (2)

We are now able to evaluate the cardinality of X(t)
for the arrays of the map: according to the defini-
tion given in Eq.(2), since each bar contains four
records, card(X(t)) may assume values in the inter-
val [0, 4], where the score 0 corresponds to whole neg-
ative OHLC returns bar, and 4 is associated to whole
positive OHLC returns bar. The following rule has
been then applied:

if card(X(t)) ≥ 3
then set signal st(t + 1) to buy (+1)

else if card(X(t)) ≤ 1
then set signal st(t + 1) to sell (-1)
else set signal st(t + 1) to standby (0)

end
end
return signal st(t + 1)

– Rule 2. (R02) As a variant of Rule R01, we have
also considered a grouping criterion that strongly sep-
arates negative by positive patterns. Remembering
that card(X(t)) ∈ [0, 4], the new rule produces active
signals (±1) only in the case of completely positive or
negative OHLC return bars:

if card(X(t)) = 4
then set signal st(t + 1) to buy (+1)

else if card(X(t)) = 0
then set signal st(t + 1) to sell (-1)
else set signal st(t + 1) to standby (0)
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end
end
return signal st(t + 1)

– Rule 3 (R03). We have tested a rule that behaves as-
suming the most recent change in price as the best pre-
dictor for the future price variation. If we indicate by
ȳ(t) the last component of each rbN(t) bar, i.e. the
(neural) closing log–returns we get:

if ȳ(t) > 0
then set signal st(t + 1) to buy (+1)

else if ȳ(t) < 0
then set signal st(t + 1) to sell (-1)
else set signal st(t + 1) to standby (0)

end
end
return signal st(t + 1)

In this case, the rule is completely adaptive, and it de-
pends on the behaviour of the (neural) closing fluctu-
ations at the previous step.

From a practical standpoint, the system we have intro-
duced is based on a double clustering action: the first one
takes place when we train the map with rbIN patterns; the
final clustering task runs when we transform the 4th dimen-
sional neural space organized by OHLC return bars into
a mono–dimensional space, arranged by ±1 and 0, from
which we extract, one bar in advance, our action in the mar-
ket.

(a) Map (b) Rule 1

(c) Rule 2 (d) Rule 3

Figure 3: From left upper corner in clockwise sense: the original map,
once trained over the rbIN patterns, and once transformed according to
Rules R01, R02, and R03.

Figure 3 visually illustrates how the procedure works

through steps (1) and (2). Moving from the upper left side
in clockwise sense, the first map is that containing rbN

arrays: each neuron represents one or more 4th dimen-
sional input samples. In our case, the upper left section
and the lower right part of the map (depicted in black and
in hard grey) correspond, respectively, to OHLC patterns
with highest and lowest fluctuations. Fading grey neurons,
on the other hand, represent OHLC returns bars with more
reduced fluctuation range. The other maps in Figure 3,
show the appearance of the original map when it is orga-
nized according to rules R01 to R03: black represents sell
positions, shaded grey buy positions, and, finally, white is
for standby. The common factor to all rules is that they
seem to organize the upper part of the map to sell position
(with the exception of neurons in the first row, due to hedge
effects), and the lower part to buy actions. It is also notable
to observe that buy and sell areas are strongly separated
into the map: this is particular evident for the maps derived
from Rules R01 and R02, where white coloured cells of the
SOM act as a border between buy and sell.

3 Case study

We are now going to evaluate the performances obtained by
the trading system described in Sec.2.2, using both statisti-
cal and financial indicators. The results will be compared
with those of classical buy and hold policy:

B&H(τ) = log
C(t + τ)

C(t)
, τ = 1, . . . , v − t

where C(·) is the Close value, and v is the out of sample
set length.

We have referred to indicators whose use is well docu-
mented in the related literature, and mainly the ones em-
ployed in [11]. In particular, the statistical significance of
the results has been evaluated by means of the indicators
given in Table 3; financial relevance of the forecasts has
been assessed with the performance measures shown in Ta-
ble 4. In order to improve the readability of the results, a
number of remarks are still noteworthy. All the statistical
indicators have been computed using the series of observ-
able closing log–returns:

y = {y(t) : y(t) = log[C(t)/C(t− 1)], t = 2, . . . , v}

opposed to the series of forecasts:

ỹ = {ỹ(t) : ỹ(t) = st−1(t)× y(t), t = 2, . . . , v}.

In addition, we have made use, when necessary, of the
Dirac’s δ function:

δ(t) =

 1, y(t)× ỹ(t) > 0;

0, y(t)× ỹ(t) ≤ 0.
t = 2, . . . , v
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Financial performances, in turn, have been evaluated on
the series:

ˆ̂y = {ˆ̂y(t) : ˆ̂y(t) = sign[y(t)]× ỹ(t), t = 2, . . . , v}.

Every time we needed to annualise the results, we have
used the annualisation factor k = 252 × 104, in order to
take into account of both the daily effect (252 days per
year), and the intraday effect (each daily session includes
104 bars at 5 minutes sampling frequency). Finally, we
have denoted by µˆ̂y the sample mean over the series of ˆ̂y’s.

Performance Measure Description

Mean Absolute
Error (MAE)

MAE = 1
v−1

v∑
t=2

|ỹ(t)− y(t)|

Root Mean Squared
Error (RMSE)

RMSE =

√
1

v−1

v∑
t=2

[ỹ(t)− y(t)]2

Theil’s inequality
coefficient

U = RMSE√
1

v−1

v∑
t=2

[ỹ(t)]2+

√
1

v−1

v∑
t=2

[y(t)]2

Correct Directional
Change (CDC)

CDC = 1
v−1

v∑
t=2

δ(t)

Table 3: The statistical indicators used to evaluate the performances of
the neural trading system.

Performance Measure Description

Annualised Return AR = κ× 1
v−1

v∑
t=2

ˆ̂y(t)

Annualised Volatility AV =
√

κ×

√
1

v−2

v∑
t=2

[ˆ̂y(t)− µˆ̂y ]2

Sharpe Ratio SR = AR
AV

Maximum Drawdown MDD = min
i = 2, . . . , t
t = 2, . . . , v

t∑
i=2

ˆ̂y(i)

Nr. of Up Periods NUP = card(ˆ̂y(t) > 0)

Nr. of Down Periods ND = card(ˆ̂y(t) < 0)

Average Gain in
Up Periods

AG =

v∑
t=2

δ(t)× y(t) /NUP

Average Loss in
Down Periods

AL =

v∑
t=2

[1− δ(t)]× y(t) /ND

Average Gain/Loss Ratio AGL = AG/AL

Table 4: Financial performance measures employed in our study.

3.1 Discussion of the results
For every subset (B01 to B05), when this makes any sense,
we compare the results of SOMs related trading rules (R01,
R02, and R03), to those of standard buy and hold (B&H)
strategy. The scores obtained by the statistical indicators
are reported in Figure 4, while the financial performances
have been rendered in Figure 6, where we plotted for each

test set the Annualised Return (AR), the Sharpe Ratio (SR),
the Maximum Drawdown (MDD) and the Average Gain–
Loss ratio (AGL), obtained with both the SOMs–based
trading rules, and the buy and hold strategy. In the case of
statistical indicators, each bar on the horizontal axes cor-
responds (for rules R01, R02, and R03) to a block of test
data (B01 to B05), while the scores obtained are reported
on the vertical axes. In the case of financial performance
measures, in addition to R01–R03 rules on the x–axes we
have also taken into account B&H; on the vertical axes,
we have reported the difference between the score of each
strategy and that computed on observable log–returns. In
the case of SR, such results have also been rescaled in the
range [0,1].

(a) MAE (b) RMSE

(c) Theil’s U (d) CDC

Figure 4: Statistical performances of SOMs–based trading system.
From top to down in clockwise sense: Mean Absolute Error (MAE), Root
Mean Squared Error (RMSE), Theil’s inequality coefficient (Theil’s U),
Correct Directional Change (CDC).

The statistical results provide evidence of a satisfactory
capability of the SOMs–based system on intraday data. As-
suming 0.01% as the upper bound value, both MAE and
RMSE maintain consistently below it, in all the examined
data samples. Such performances are counterbalanced by
less satisfactory scores achieved by the Theil’s U index.
At this stage, it could be argued that since U ranges from 0
(complete matching to the reference series) to 1 (maximum
distance from the reference series), and the scores we have
obtained are sensitively closer to 1 than to 0, the results as
a whole are far to be considered encouraging. In order to
mitigate such impression, we also studied the U statistics
related to the series of cumulative returns cy = {cy(t)},
being:

cy(t) =
t∑

j=2

y(j), t = 2, . . . , v
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Numerical results are given in Table 5; the dynamics
of observable cumulative returns (equity lines), opposed
to those obtained by running Rules R01, R02, and R03 is
given in Figure 5.

Name B01 B02 B03 B04 B05
R01 0.798 0.549 0.674 0.946 0.798
R02 0.760 0.455 0.690 0.834 0.800
R03 0.609 0.752 0.740 0.832 0.813

Table 5: U statistics for the cumulative closing log–returns of the test
sets, in the case of different rules R01, R02, and R03.

(a) B01 (b) B02

(c) B03 (d) B04

(e) B05

Figure 5: From left to right and from top to bottom: the comparison
among equity lines and the curve of cumulative returns as resulting by
running Rules R01, R02, and R03, for various test sets.

By comparison of the results in Table 5 with the be-
haviour of equity lines, it clearly emerges that higher U
values are not necessarily related to poor overall perfor-
mances. More importantly, our system makes possible to
capture the market general trend: this is particularly true in
uptrend periods B01, B03, and in the sideward phase B02.

Those remarks are somewhat confirmed when we look
at the differential scores of financial indicators. In gen-
eral, the SOM–based system has assured notable annual-

(a) AR (b) SR

(c) MDD (d) AGL

Figure 6: Financial Performances of SOM based trading systems. From
top to down in clockwise sense: differential values of Annualised Re-
turn (AR), Sharpe Ratio (SR), Maximum Drawdown (MDD) and Average
Gain–Loss ratio (AGL). The SR scores are scaled within the range [0,1].

ized returns. In particular, rules R01 and R03 have run suc-
cessfully in three of five data blocks. The performances
of rule R02 are apparently penalized by the greater num-
ber of standby (0) positions suggested by the rule itself.
Note that the buy and hold strategy does not appear to be
proficient on intraday data, and, according to the Sharpe
Ratio scores that are sensitively lower than in the case of
SOM–based rules, it also pays a greater tribute in terms
of volatility. Another important evidence comes from the
values of MDD and AGL. The SOM–based rules seem to
hedge with respect to losses: since we have reported differ-
ential values, a negative MDD score means that the neural
(R01, R02 or R03) strategy has guaranteed a MDD lower
than the one observed on real data; the opposite holds in the
case of B&H. Similar considerations may be done for the
AGL ratio: non negative values (see for instance R01 and
R03 on Figure 6 in four of five blocks) show the capability
of our system to gain advantage from intraday fluctuations.

4 Conclusions
We have built a trading system based on Self Organizing
Maps (SOMs) to operate on financial markets at intraday
trading frequencies. To such aim, we have considered the
5 minutes OHLC bars for the S&P MIB, observed in the
interval: 17 September 2004–12 May 2006. Such raw
data were splitted into five blocks, according to the pre-
vailing trend (upward, downward or sideward): 70% of
samples in each block has been employed to train the sys-
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tem, while the remaining 30% has been used as test set.
We have then trained SOMs (whose dimensions and pa-
rameters were selected through a data snooping procedure)
with the in–sample returns bars, and we have associated to
each reference vector (i.e. to each neuron) a trading sig-
nal, according to three rules that we have introduced and
discussed in the previous sections. Finally, we presented
the patterns of the test set to the so clustered maps, cou-
pling each returns bar at time t with the signal to trade the
index closing price at time t + 1. The results were eval-
uated with the help of a number of statistical and finan-
cial indicators. The results obtained are quite promising,
since they give evidence (according to both statistical and
financial indicators) that SOMs work well when they are
called to discover intraday patterns, and such retrieved in-
formation can be used to perform market tradings. Some
problems still remain open. The first odd is of “technical
”nature: we have assumed to stop the learning procedure
when a proper threshold value is reached by some conver-
gence indexes, but clearly other stopping solutions could
be equally promising. The second problem is the evalua-
tion of the representiveness of the input set respect to the
test set: it is evident that strong divergences among such
blocks of data can seriously compromise the overall per-
formance of the system. This, for instance, could be the
reason for poor performances in the case of the B04 set
of data; an alternative explanation, however, could be that
SOMs simply run better on uptrend rather than on down-
trend patterns. A possible solution (presently not explored
in deepest detail) could be that to consider different neural
trading systems specialized on various aspects of the mar-
ket (bullish/bearish), with the possibility of switches from
one to another, according to the fluctuations features of the
market. Finally, the system we have presented relies on two
clustering tasks, the second of which is rule dependent; we
have implemented three different rules that seem to work
reasonably well, but a straightforward step for future works
is the study of more efficient rules.
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