
Modular Network SOM and Self-Organizing Homotopy Network
as a Foundation for Brain-like Intelligence

Tetsuo Furukawa
Department of Brain Science and Engineering, Kyushu Institute of Technology

2–4 Hibikino, Wakamtatsu-ku, Kitakyushu 808–0196, Japan
e-mail: furukawa@brain.kyutech.ac.jp

Keywords: homotopy, fiber bundle, SOM2, mnSOM

Abstract— In this paper, two generalizations of the
SOM are introduced. The first of these extends the SOM
to deal with more generalized classes of objects besides the
vector dataset. This generalization is realized by employ-
ing modular networks instead of reference vector units and
is thus called a modular network SOM (mnSOM). The sec-
ond generalization involves the extension of the SOM from
‘map’ to ‘homotopy’, allowing the SOM to deal with a set
of data distributions rather than a set of data vectors. The
resulting architecture is called SOMn, where each reference
unit represents a tensor of rankn. These generalizations
are expected to provide good platforms on which to build
brain-like intelligence.

1 Introduction

In order to develop intelligent agents such as autonomous
robots, we must give them much higher functions than
those realized thus far. For example, such agents need to
have a large scale memory that has an effective learning
algorithm without interference between memories, a high
adaptability to changes in context and environment, and an
ability to generalize their knowledge from a limited number
of experiences. In addition, it is important to transcend the
dualism of supervised and unsupervised learning schemes.
To develop such systems, we need fundamental architec-
tures that provide good platforms on which to build these
systems.

In this paper, we introduce two fundamental architec-
tures: a modular network SOM (mnSOM) and SOMn.
These architectures will provide, as a starting point, good
platforms on which to develop intelligent agents. The ba-
sic idea of the mnSOM is to combine Kohonen’s self-
organizing map (SOM) with a modular network. This idea
was first proposed by Tokunagaet al. [1, 2], and many vari-
ations have since been developed. On the other hand, the
SOMn is an extension of the SOM from ‘map’ to ‘homo-
topy’ [3, 4, 5], and is thus also called aSelf-Organizing Ho-
motopy(SOH). A SOMn represents the continuous change
of a set of data distributions. Next, we describe the con-
cepts and theory of the mnSOM and SOMn, and then we
introduce some applications thereof.

2 Concepts of the generalizations

2.1 Architecture of mnSOM

The concept of an mnSOM is simple. Every reference
vector unit of Kohonen’s SOM is replaced by a functional
module of a neural network (Figure 1). Thus, the mnSOM
can also be regarded as a kind of modular network in which
the modules are arrayed on a lattice. Therefore, the mn-
SOM has features of both the SOM and modular network.
This strategy has several advantages. First, the mnSOM al-
lows users to deal with not only a set of vector data, but
also sets of functions, systems, time series, manifolds, and
so on. Second, users can design the functional modules ac-
cording to their purpose. Users can choose an appropriate
module type from a great number of existing trainable ar-
chitectures [6]. Therefore, the mnSOM provides users with
a high degree of flexibility and freedom. Third, the theoret-
ical aspects of the conventional SOM, e.g., statistical prop-
erties, are consistent with those of the mnSOM, because the
backbone algorithm for the SOM is left untouched. This
ensures the theoretical reliability of the mnSOM for users
[7].

Multilayer Perceptron Recurrent neural network Auto-associative neural network

Functional module

Figure 1: The concept of a modular network SOM (mn-
SOM).



As an example, let us consider the case in which a user
wishes to implement an adaptive controller system using
an mnSOM. The user’s purpose is to build an mnSOM
with multiple controller modules, each of which is spe-
cialized within a different context. In this case, the user
only has to (i) determine the architecture of the trainable
controller modules, and (ii) define an appropriate distance
measure that determines the distance between two con-
trollers. The task of the mnSOM is to train the functional
modules within various contexts, while at the same time
generating a feature map that indicates similarities and dif-
ferences between the controllers. If the required controllers
in contexts A and B are similar, then the corresponding
controllers should be located near each other in the map
space of the mnSOM. If contexts C and D, however, re-
quire quite different controllers, these controllers should
be arranged further apart. Additionally, the intermediate
modules are expected to become controllers for intermedi-
ate contexts. The backbone algorithm for a SOM ensures
such continuity between modules. After the training has
finished, the user can use the mnSOM as an assembly of
controllers that can adapt to dynamic changes in context.
This is a novel aspect that is not found in a conventional
SOM, which generates only a static map. These advantages
are realized through the synergy of the SOM and modular
network.

In the above case, the mnSOM represents the continu-
ous change in a set of input-output relations, i.e., a set of
functions. This mathematical concept is known as a ‘homo-
topy’, and thus, the mnSOM can be regarded as a learning
machine representing a homotopy.

2.2 Architecture of SOMn

By employing a SOM itself as the functional module in an
mnSOM, we obtain a SOM-module-mnSOM. This type of
mnSOM provides us with another extension of the SOM,
the SOM2 (Figure 2). A SOM2 consists of an assembly of
basic SOM modules arrayed on a lattice, which are replace-
ments for the reference vectors of the basic SOM. Thus a
SOM2 is also regarded as a ‘SOM of SOMs’. Though the
name may sound a bit eccentric, the SOM2 is a straightfor-
ward extension of the conventional SOM. Further nesting
of SOMs, as in Russian dolls, is also possible, e.g., SOM3

and SOM4. Theoretically, the reference units of a SOMn

represent tensors of rankn. This means that the reference
units of a SOM1 represent tensors of rank 1, i.e., ordinary
vectors, and thus a SOM1 is just a conventional SOM.

Since the basic SOM represents a mapping from a high-
dimensional data space to a low-dimensional feature one,
the actual task of the SOM2 is to represent the continuous
change in these maps, i.e., a homotopy. Thus, the SOM2

is an extension from a ‘self-organizing map’ to a ‘self-
organizing homotopy’. From another viewpoint, the SOM2

has the ability of representing a set of distributions of given
datasets by a fiber bundle, whereas the conventional SOM

Parent map

Child maps

W
1

W
2

W
3

W
4

W
5

V
1 V

3
V

2Class maps

Episodes X
1

X
2 X

3

Figure 2: The concept of the SOM2.

represents a data distribution by a manifold. Therefore the
SOM2 can be regarded as a fiber bundle learning machine
rather than a manifold learning one.

When a group of datasets is given, the SOM2 approx-
imates their distributions by using a set ofchild SOMs,
and theparent SOMsimultaneously generates a map of the
child maps. If two distributions of datasets are compara-
tively similar (or different), these two datasets are located
closer (or further apart) in the parent map.

Such an architecture is useful when a set of data vec-
tors observed from the same object forms a corresponding
manifold in the data space. A typical example is face clas-
sification from a set of 2-dimensional photographs. In this
case, a set of photographs taken of a single person from
various viewpoints forms a manifold that is unique to that
person. Therefore, if there aren people, one obtainsn face
image manifolds that can be classified by a SOM2 [4].

2.3 Framework: Episode and Class

Two important concepts are used to describe the algorithms
for the mnSOM and SOM2: episodeandclass. An episode
is a set of data vectors observed at the same time and is the
minimum unit in the generalized algorithms. Thus, data
vectors belonging to the same episode should be processed
by the same functional module or the same child SOM. On
the other hand, aclassis a set of data vectors observed from
the same object, e.g., the same system, but not necessarily
at the same time.

As an example, suppose that there are static systems
A, B, C, · · · . Here class A represents a set of input-
output data vectors observed from system A, i.e.,CA =

{(xA1, yA1), . . . , (xAn, yAn)}. Suppose further that there are
episodesD1, D2, · · · , andDi = {(xi,1, yi,1), . . . , (xi,m, yi,m)}.
If episodeDi is observed from system A, thenDi should
be a subset ofCA, but there may be other episodes that are
also observed from system A.

2



It is worth stressing that an episode does not necessarily
have alabel, which indicates the class to which it belongs.
In the case of anunlabeled episode, the data vectors of the
episode should be members of the same class, but there
is no information about the class they belong to. In other
words, every data vector has atag that indicates the episode
to which it belongs, but they do not have labels. In the
case oflabeled episodes, the class information is given to
every episode, so that every class can be regarded as a sum
of episodes. The important point is that the mnSOM and
SOM2 can deal with both cases. It is sometimes assumed
that these extensions need class labels, but this is not true.

There is another episode category. Acomplete episode
is one that has enough data vectors to cover the manifold of
the class. In contrast, apartial episodeprovides only lim-
ited information about the class. For example, an episode
of face images with limited view angles is a partial episode.
The algorithm for the generalized SOM needs to be modi-
fied depending on the episode type.

2.4 Naive extension of SOM

Suppose that an mnSOM user has a set of episodesD =

{D1, . . . ,DI }, and each of these hasJ data vectors, i.e.,
Di = {r i,1, . . . , r i,J}. To simplify the situation, let us assume
that these episodes are complete and labeled, and observed
from a set of objectsO = {O1, . . .OI }. In a conventional
SOM, each data vector is a mapping object, whereas in the
case of an MLP-mnSOM, each object corresponds to one
of the nonlinear functions.

There is an essential difference between the conventional
SOM and our generalized SOMs. In the former case, all the
mapping objects, i.e., the data vectors, are known and there
is no need to estimate the objects. On the other hand, in
the case of a generalized SOM it often happens that the
entities of the objects are unknown. Therefore, the user
needs to identify the objects at the same time as generat-
ing their self-organizing map. Thus the generalized SOM
should solve the simultaneous estimation problem.

Let us suppose that the mnSOM hasK functional mod-
ules{M1, . . . ,MK}, which are designed with the ability to
regenerate or mimic the objects. In other words, a module
is capable of approximating an objectOi after training by
the episodeDi . Suppose further that the property of each
functional moduleMk is determined by a parameter vector
wk. In this situation, the tasks of the mnSOM are: (i) to
identify the objects{Oi} from the episodes{Di}, and (ii) to
generate a map of these objects. These two tasks should be
processed in parallel.

The most straightforward and naive generalization of the
mnSOM algorithm is now given. Let̃r k

i, j be an approxima-
tion of r i, j by thek-th module. Then the average error be-
tween thei-th episode and thek-th moduleEk

i is measured

by

Ek
i =

1
J

J∑

j=1

∥∥∥r̃ k
i, j − r i, j

∥∥∥2
. (1)

The BMM is then determined by

k∗i , arg min
k

Ek
i , (2)

and the learning mass{mk
i } and the normalized learning

mass{µk
i } are calculated by

mk
i = h

(
d(k, k∗i ); t

)
(3)

µk
i =

mk
i

I∑

i′=1

mk
i′

. (4)

Finally, every module is trained using episodes with the
learning mass{µk

i }. If the module algorithm is described
by the gradient descendent method, then the modules are
updated as follows.

wk = −η
I∑

i=1

µk
i

∂Ek
i

∂wk
(5)

This is thenaivealgorithm for a generalized mnSOM.
This naive generalization may appear correct, and indeed it
has often been used in past research. In fact the naive al-
gorithm works appropriately in many cases, but not always.
Though this naive version is worth trying, users are advised
to examine the relevance as discussed below.

2.5 Natural extension of SOM

Now let us consider the true generalization of the mnSOM
algorithm, which includes the naive case, in which the dis-
tance measure is defined by the average error between a
data vector and a module output. To obtain a more the-
oretically plausible algorithm, we must consider the dis-
tance measured between an objectOi and a moduleMk.
Thus, users need to define an appropriate distance measure
L(Oi , Ôk) that reflects the difference between an entire ob-
ject Oi and an entire model̂Ok obtained byMk, instead of
the difference between an individual data vector and the
corresponding output of a module. Since the distance de-
pends on how the user wants to define the differences be-
tween two objects, the measure should be defined accord-
ing to the user’s purpose.

By using the distance measure, the definition ofmass
centercan be determined by

Ō , arg min
O

I∑

i=1

miL
2(Oi ,O). (6)

3



HereŌ is the mass center of the given objects{O1, . . .OI }
with masses{mi}. If O belongs to a vector space, then̄O is
given by

Ō =
m1O1 + · · ·mI OI

m1 + · · ·mI
=

I∑

i=1

µiOi . (7)

Here µk
i denotes the normalized mass given byµi =

mi/
∑

i′ mi′ .
Since each objectOi is assumed to be unknown, we can

measure only the distance between an estimated object and
a module, i.e.,L2(Õ(Di), Ôk). HereÕ(Di) is the object esti-
mated from thei-th episodeDi , and it is updated in parallel
with Ôk.

Each module is updated so as to be the mass center,
the mass of which is given by the neighborhood function.
Thus, the updated algorithm is formulated as

wk(t + 1) = arg min
w

I∑

i=1

mk
i L2

(
Õ(Di , t), Ô(w)

)
. (8)

When the estimated distanceL2(Õ(Di), Ôk) can be approx-
imated by the mean square error, i.e.,

L2
(
Õ(Di), Ô

k
)
' 1

J

J∑

j=1

∥∥∥r̃ k
i, j − r i, j

∥∥∥2
, (9)

the naive algorithm is obtained.
Typical cases that require this generalization are the

SOM-module-mnSOM, known as SOM2, and the mnSOM
with auto-associative neural network modules.

2.6 Algorithm for SOM 2

The algorithm for the SOM2 can be derived from the nat-
ural algorithm described above. Letwkl denote thel-
th reference vector of thek-th child SOM, thenWk =

(wk1, . . . ,wkL) refers to the joint reference vectors of the
k-th child SOM. ThusWk represents thei-th section of
the fiber bundle, whileFl = (w1l , . . . ,wKl) expresses the
l-th fiber. Besides the parent and child maps, another set
of SOMs, calledclass maps, are prepared to describe the
class manifolds. Letvnl andVn be the reference vectors and
the joined reference vectors of the class maps, respectively.
Note thatV andW correspond toÕ andÔ, respectively.

Now let us consider an example withI episodes{xi j },
wherexi j is assumed to belong to thei-th class. In this situ-
ation, the SOM2 algorithm for the parent map is formulated
as follows.

k∗(Vn) = arg min
k
‖Vn −Wk‖ (10)

Ak
n =

hp [d(k, k∗(Vn))]∑
n′ hp

[
d(k, k∗(Vn′ ))

] (11)

Wk =
∑

n

Ak
n Vn (12)

The algorithm for child maps is described by

l∗(xi j ) = arg min
l
‖xi j − wk∗(V i )l‖ (13)

Bnl
i j =



hc

[
d(l, l∗(xi j ))

]
∑

j′ hc
[
d(l, l∗(xi j ′ ))

] if n = i

0 if n , i

(14)

vnl =
∑

i

∑

j

Bnl
i j xi j . (15)

By combining Eqs. (12) and (14), the following updated
SOM2 algorithm is obtained.

wkl =
∑

n

∑

i

∑

j

Ak
n Bnl

i j xi j (16)

Note that the class maps{Vn} have disappeared in Eq. (16),
because{Vn} is defined for convenience of explanation and
is therefore not necessary in the practical implementation.

The above algorithm can be interpreted as follows. At
the parent level, the conventional SOM algorithm is exe-
cuted by regardingVn andWk as the data and the reference
vectors, respectively. At the child level, the reference vec-
tors of the class mapsvnl are updated by executing the con-

2l
m

ux
C

f
M

Figure 3: A map of controllers of inverted pendulums gen-
erated by an mnSOM.

4



Figure 4: A map of facial images generated by a SOM2. Each row represents a child map, whereas each column represents
a fiber of the SOM2.

ventional SOM algorithm, in which the reference vector of
the winner, i.e.,wk∗(Vn)l , is regarded as the initial state of
vnl. Consequently the child maps are organized by affect-
ing one another via the parent map, thus representing the
fibers naturally. Note that thek-th reference unitWk is a
tensor of rank 2, and the entire SOM2 is represented by a
tensor of rank 3.

3 Applications

Adaptive control is one of the typical application fields for
the mnSOM. In this case, the mnSOM consists of an assem-
bly of neural network controllers. By training the mnSOM
using various parameters of the target object, the mnSOM
generates a map of controllers. Figure 3 shows the map of
controllers for an inverted pendulum, the mass and length
of which vary. Since this map also represents the parameter
space of the pendulums, the mnSOM can select the appro-
priate controller module before taking over control. For
example, if a given pendulum looks long and heavy, the
mnSOM can commence control using the controller mod-
ule that appears most appropriate. Once after taking over
control, the best matching controller is selected as the win-
ner. Further details of this method are given in [8].

The main application field for the SOM2 is manifold

classification. The representation and classification of face
image sets are examples of this. Figure 4 shows the map
of faces generated by a SOM2. In this case, every episode
consists of a set of facial images taken from various angles.
As a result, the continuous change in camera angle is rep-
resented by the child maps, whereas each fiber represents a
set of face images taken from the same angle.

Shape classification is another typical application for the
SOM2. Figure 5 shows an example, where every contour
is regarded as an episode, each data vector of which rep-
resents thex − y coordinate of a dot. Figure 5 (b) shows
the map of the contours generated by a SOM2. The result
shows that the intermediate child maps represent intermedi-
ate shapes, and the entire SOM2 represents the continuous
change in the contours. Figure 5 (c) shows a more prac-
tical case, in which a set of neural gas (NG) networks are
employed instead of child SOMs.

4 Conclusion

In this paper, two generalizations of the SOM are intro-
duced. The two methods can easily be combined, enabling
larger networks to be built. If a user wishes to represent
a set of continuously changing input-output functions, the
RBF×SOM2 would be a good solution. In addition, these

5



(a) (b)

(c)

Figure 5: (a) The given set of contours of a map of shapes (b) The map of shapes generated by a SOM2 (c) A map of faces
represented by a set of dots (The original map is one dimensional; due to space constraints it is however displayed over 4
lines.)

generalizations can be applied to many extensions of the
SOM, such as the growing type, hierarchical type and so
on. The combination with the growing type of SOMs pro-
vides a more flexible representation of higher-order func-
tions. We are now applying this method to building intelli-
gence for autonomous agents.

Acknowledgements
This work was partially supported by the 21st Century

Center of Excellence Program at Kyushu Institute of Tech-
nology (Center #J19) by MEXT of Japan. The work was
also partially supported by a Grant-in-Aid for Scientific Re-
search (C) granted by MEXT of Japan. The facial images
in this paper have been used with permission of Softopia
Japan, Research and Development Division, HOIP Labo-
ratory.

References

[1] K. Tokunaga, T. Furukawa and S. Yasui, “Modular net-
work SOM: Extension of SOM to the realm of function
space,”Proc. of WSOM2003, pp.173–178, 2003.

[2] K. Tokunaga, T. Furukawa and S. Yasui, “Modular net-
work SOM: Self-organizing maps in function space,”

Neural Information Processing – Letters and Reviews,
Vol.9, No.1, pp.15–22, 2005.

[3] T. Furukawa, “SOM of SOMs: Self-organizing map
which maps a group of self-organizing maps,”Lec-
ture Notes in Computer Science, Vol.3696, pp.391–
396, 2005.

[4] T. Furukawa, “SOM2 as SOM of SOMs,”Proc. of
WSOM2005, pp.545–552, 2005.

[5] T. Furukawa, “An extension SOM from ‘map’ to
‘homotopy’,” Lecture Notes in Computer Science,
Vol.4232, pp.958–967, 2006.

[6] T. Furukawa, “Generalization of the self-organizing
map: From artificial neural networks to artificial cor-
texes,”,Lecture Notes in Computer Science, Vol.4232,
pp.943–949, 2006.

[7] T. Furukawa, K. Tokunaga, K. Morishita and S. Yasui,
“Modular network SOM (mnSOM): From vector space
to function space,”Proc. of IJCNN2005, pp.1581–
1586, 2005.

[8] T. Minatohara and T. Furukawa, “Self-organizing
adaptive controllers: Application to the inverted pen-
dulum,” Proc. of WSOM2005, pp.537–544, 2005.

6


