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Abstract— In this paper, two generalizations of the2 ~Concepts of the generalizations

SOM are introduced. The first of these extends the SOM

to deal with more generalized classes of objects besidestPel  Architecture of mnSOM

vector dataset. This generalization is realized by employ-

ing modular networks instead of reference vector units anthe concept of an mnSOM is simple. Every reference

is thus called a modular network SOM (mnSOM). The sec¢ector unit of Kohonen's SOM is replaced by a functional

ond generalization involves the extension of the SOM fronmodule of a neural network (Figure 1). Thus, the mnSOM

‘map’ to ‘homotopy’, allowing the SOM to deal with a set can also be regarded as a kind of modular network in which

of data distributions rather than a set of data vectors. THBe modules are arrayed on a lattice. Therefore, the mn-

resulting architecture is called SOMvhere each reference SOM has features of both the SOM and modular network.

unit represents a tensor of rank These generalizations This strategy has several advantages. First, the mnSOM al-

are expected to provide good platforms on which to builtows users to deal with not only a set of vector data, but

brain-like intelligence. also sets of functions, systems, time series, manifolds, and
so on. Second, users can design the functional modules ac-
cording to their purpose. Users can choose an appropriate

. module type from a great number of existing trainable ar-

1 Introduction chitectures [6]. Therefore, the mnSOM provides users with
a high degree of flexibility and freedom. Third, the theoret-

In order to develop intelligent agents such as autonomoitsal aspects of the conventional SOM, e.g., statistical prop-

robots, we must give them much higher functions thaarties, are consistent with those of the mnSOM, because the

those realized thus far. For example, such agents needdfckbone algorithm for the SOM is left untouched. This

have a large scale memory that has #ieative learning ensures the theoretical reliability of the mnSOM for users
algorithm without interference between memories, a higjy].

adaptability to changes in context and environment, and an
ability to generalize their knowledge from a limited number
of experiences. In addition, it is important to transcend the
dualism of supervised and unsupervised learning schemes.
To develop such systems, we need fundamental architec-
tures that provide good platforms on which to build these
systems.

In this paper, we introduce two fundamental architec-
tures: a modular network SOM (mnSOM) and SOM
These architectures will provide, as a starting point, good
platforms on which to develop intelligent agents. The ba-
sic idea of the mnSOM is to combine Kohonen’s self-
organizing map (SOM) with a modular network. This idea
was first proposed by Tokunagaal. [1, 2], and many vari-
ations have since been developed. On the other hand, th
SOM" is an extension of the SOM from ‘map’ to ‘homo-
topy’ [3, 4, 5], and is thus also calledself-Organizing Ho-
motopy(SOH). A SOM represents the continuous change
of a set of data distributions. Next, we describe the con-
cepts and theory of the mnSOM and SOMnd then we Figure 1: The concept of a modular network SOM (mn-
introduce some applications thereof. SOM).

Multilayer Perceptron Recurrent neural network | Auto-associative neural network




As an example, let us consider the case in which a user Child maps
wishes to implement an adaptive controller system using
an mnSOM. The user’s purpose is to build an mnSOM
with multiple controller modules, each of which is spe-
cialized within a diferent context. In this case, the user =
only has to (i) determine the architecture of the trainable - -
controller modules, and (ii) define an appropriate distance ./ Parentmap
measure that determines the distance between two con- X
trollers. The task of the mnSOM is to train the functional . 1»’//4 2
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modules within various contexts, while at the same time
generating a feature map that indicates similarities and dif- ‘ ‘
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ferences between the controllers. If the required controllers

in contexts A and B are similar, then the corresponding Episodes 2
controllers should be located near each other in the map 0@&
space of the mnSOM. If contexts C and D, however, re-

quire quite dfferent controllers, these controllers should

be arranged further apart. Additionally, the intermediate Figure 2: The concept of the SGM

modules are expected to become controllers for intermedi-

ate contexts. The backbone algorithm for a SOM ensures

such continuity between modules. After the training hakepresents a data distribution by a manifold. Therefore the

finished, the user can use the mnSOM as an assembly%@Mz can be regarded as a fiber bundle learning machine

controllers that can adapt to dynamic changes in contex@ther than a manifold learning one.

This is a novel aspect that is not found in a conventional When a group of datasets is given, the SOapprox-

SOM, which generates only a static map. These advantaggtes their distributions by using a set dfild SOMs

are realized through the synergy of the SOM and modul&nd theparent SOMsimultaneously generates a map of the

network. child maps. If two distributions of datasets are compara-
In the above case, the mnSOM represents the contintively similar (or diferent), these two datasets are located

ous change in a set of input-output relations, i.e., a set &foser (or further apart) in the parent map.

functions. This mathematical concept is known as a ‘homo- Such an architecture is useful when a set of data vec-

topy’, and thus, the mnSOM can be regarded as a learnif@s observed from the same object forms a corresponding
machine representing a homotopy. manifold in the data space. A typical example is face clas-

sification from a set of 2-dimensional photographs. In this
. case, a set of photographs taken of a single person from
2.2 Architecture of SOM" various viewpoints forms a manifold that is unique to that
Jperson. Therefore, if there angpeople, one obtainsface
jmage manifolds that can be classified by a SQ#).

By employing a SOM itself as the functional module in a
mnSOM, we obtain a SOM-module-mnSOM. This type o
mnSOM provides us with another extension of the SOM,

the SOM (Figure 2). A SOM consists of an assembly of 2 3 Eramework: Episode and Class

basic SOM modules arrayed on a lattice, which are replace-

ments for the reference vectors of the basic SOM. ThusTwo important concepts are used to describe the algorithms
SOM is also regarded as a ‘SOM of SOMs’. Though thdor the mnSOM and SOR episodeandclass An episode
name may sound a bit eccentric, the SOiMa straightfor- is a set of data vectors observed at the same time and is the
ward extension of the conventional SOM. Further nestinghinimum unit in the generalized algorithms. Thus, data
of SOMs, as in Russian dolls, is also possible, e.g., 80Mectors belonging to the same episode should be processed
and SOM. Theoretically, the reference units of a SOM by the same functional module or the same child SOM. On
represent tensors of ramk This means that the referencethe other hand, elassis a set of data vectors observed from
units of a SOM represent tensors of rank 1, i.e., ordinarnthe same object, e.g., the same system, but not necessarily
vectors, and thus a SONis just a conventional SOM. at the same time.

Since the basic SOM represents a mapping from a high- As an example, suppose that there are static systems
dimensional data space to a low-dimensional feature on&, B, C, ---. Here class Arepresents a set of input-
the actual task of the SOMs to represent the continuous output data vectors observed from system A, i@, =
change in these maps, i.e., a homotopy. Thus, the SON(Xa,,Ya,).- - -, (Xa,.Ya,)}- Suppose further that there are
is an extension from a ‘self-organizing map’ to a ‘self-episode®ds, Dy, ---, andD; = {(Xi 1, ¥i.1)s - - - » Ki.m,» Yi.m)}-
organizing homotopy’. From another viewpoint, the SOM If episodeD; is observed from system A, thedy should
has the ability of representing a set of distributions of givebe a subset df, but there may be other episodes that are
datasets by a fiber bundle, whereas the conventional SCaso observed from system A.



It is worth stressing that an episode does not necessarily
have dabel, which indicates the class to which it belongs.
In the case of annlabeled episodahe data vectors of the 13 " 2
episode should be members of the same class, but there it 3 Z “ri,J -rgl” @)
is no information about the class they belong to. In other
Words_, every data vector hasagthat indicates the episode The BMM is then determined by
to which it belongs, but they do not have labels. In the
case oﬂa_beled episodeghe class information is given to K = arg minEik’ @)
every episode, so that every class can be regarded as a sum k
of episodes. The important point is that the mnSOM and
SOM? can deal with both cases. It is sometimes assumédd the learning masgrt} and the normalized learning
that these extensions need class labels, but this is not tru@laSS{/Jik} are calculated by

There is another episode category.cémplete episode

is one that has enough data vectors to cover the manifold of rri< =h(d(kK); 9 ®)
the class. In contrast, gartial episodeprovides only lim- K mf

ited information about the class. For example, an episode M= “)
of face images with limited view angles is a partial episode. Z m}<

The algorithm for the generalized SOM needs to be modi- i=1

fied depending on the episode type. ) . . . . .
Finally, every module is trained using episodes with the

learning massf.p}(}. If the module algorithm is described

by the gradient descendent method, then the modules are
2.4 Naive extension of SOM updated as follows.
. L OEK
Suppose that an mnSOM user has a set of epis@iles wK = _”Z“:(_Ik
{D1,...,D;}, and each of these hakdata vectors, i.e., —ow
Di ={ri1,...,riJ}. Tosimplify the situation, let us assume
that these episodes are complete and labeled, and observedhis is thenaive algorithm for a generalized mnSOM.
from a set of object® = {Oy,...0}. In a conventional This naive generalization may appear correct, and indeed it
SOM, each data vector is a mapping object, whereas in th@s often been used in past research. In fact the naive al-

case of an MLP-mnSOM, each object corresponds to org®rithm works appropriately in many cases, but not always.
of the nonlinear functions. Though this naive version is worth trying, users are advised

. N . to examine the relevance as discussed below.
There is an essentialffirence between the conventional

SOM and our generalized SOMs. In the former case, all the

mapping objects, i.e., the data vectors, are known and thepe5 Natural extension of SOM

is no need to estimate the objects. On the other hand, in

the case of a generalized SOM it often happens that théow let us consider the true generalization of the mnSOM
entities of the objects are unknown. Therefore, the us@lgorithm, which includes the naive case, in which the dis-
needs to identify the objects at the same time as generfnce measure is defined by the average error between a
ing their self-organizing map. Thus the generalized SOMata vector and a module output. To obtain a more the-

should solve the simultaneous estimation problem. oretically plausible algorithm, we must consider the dis-
tance measured between an obje¢tand a moduleM¥.

ules{MZ, ... MK}, which are designed with the ability to Thus, users need to define an appropriate distance measure

- Ok i .
regenerate or mimic the objects. In other words, a modufg(g'éqgntglzzrzngésr:;%gfrsgfa?nt;edwgeer,l ?stgggeo?b
is capable of approximating an objdot after training by J ! MY,

. the diference between an individual data vector and the
the episodeéD;. Suppose further that the property of each ) . .
functional moduleM¥ is determined by a parameter Vectorcorrespondlng output of a module. Slnce the_ distance de-
wX. In this situation, the tasks of the mnSOM are: (i) tcoends on how the user wants to define thigedences be-

identify the object40;} from the episodefD;}, and (ii) to it\rzveteont:]v;/zougt;jrt’esctsdrthoesgneasure should be defined accord-
generate a map of these objects. These two tasks should't ) purpose. —
processed in parallel. y using the distance measure, the definitionmass

i } o centercan be determined by
The most straightforward and naive generalization of the

mnSOM algorithm is now given. La?tj be an approxima- _ |
tion of r; ; by thek-th module. Then the average error be- Oz arg minz mL2(0;, O). (6)
tween the-th episode and thieth moduleEK is measured ° iz

®)

Let us suppose that the mnSOM h&adunctional mod-



HereO is the mass center of the given objef®,...O;}  The algorithm for child maps is described by
with masse$m;}. If O belongs to a vector space, th@ris

given by I"(x1) = arg minjjxi} —w< ) (13)
|
_ ! he [d(l, 1*(x1))
o= mMO; +---m O ZZ,Uioi- ) Ch[ FTRE ij’] ifn=i
m+---m - Bir}l _ J 2y he[d(l, I (x1)] (14)
Here 4 denotes the normalized mass given by = 0 if n#i
m/ 2 M. nl nl ]
Since each objed; is assumed to be unknown, we can Vi = Z Z B x'. (15)
j

measure only the distance between an estimated object and i
i.e.L2(O(D:). Ok D) i i i- - .
amodule, i.e.L%(O(D;), O). HereO(Dy) is the object esti- gy comhining Egs. (12) and (14), the following updated
mated from the-th episodeD;, and it is updated in parallel SOM? algorithm is obtained
with O, '
Each module is updated so as to be the mass center, wK = ZZ ZAE Binjl N (16)
the mass of which is given by the neighborhood function. T

Thus, the updated algorithm is formulated as ) )
Note that the class mag¥"} have disappeared in Eq. (16),

' . . becausgV"} is defined for convenience of explanation and
wH(t+ 1) = arg minz mfL? (O(Di,t), O(W))~ (8) s therefore not necessary in the practical implementation.
Yoo The above algorithm can be interpreted as follows. At
the parent level, the conventional SOM algorithm is exe-
cuted by regardiny™ andW* as the data and the reference
vectors, respectively. At the child level, the reference vec-
tors of the class mapg' are updated by executing the con-

When the estimated distant&O(D;), O¥) can be approx-
imated by the mean square error, i.e.,

f o 1L
L2(60). &) ~ 5 2 IR = rul ©)
=1

the naive algorithm is obtained.

Typical cases that require this generalization are the
SOM-module-mnSOM, known as SGland the mnSOM
with auto-associative neural network modules.

2.6 Algorithm for SOM ?

The algorithm for the SORlIcan be derived from the nat-
ural algorithm described above. Let' denote thel-
th reference vector of thi&-th child SOM, thenwX =

(WKL, ..., wkb) refers to the joint reference vectors of the Long Long
k-th child SOM. ThusWX represents théth section of _ Heavy Light
the fiber bundle, whilee' = (w",...,wK!) expresses the Short

I-th fiber. Besides the parent and child maps, another set Light

of SOMs, calledclass mapsare prepared to describe the tﬁjﬂm

class manifolds. Let" andV" be the reference vectors and
the joined reference vectors of the class maps, respectively.
Note thatv andW correspond t® andO, respectively.

Now let us consider an example withepisodegx'1}, Short

wherex' is assumed to belong to thh class. In this situ- i

ation, the SOM algorithm for the parent map is formulated Half Half
as follows. Heavy Light

K*(V™) = arg min|[V" — W] (10) |
k
Sho Half
« hpldi k' (V)] an Fiessy Middie
2 hp[d(k, k*(V™))]
WK = Z AQVAL (12) Figure 3: A map of controllers of inverted pendulums gen-
n erated by an mnSOM.
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Figure 4: A map of facial images generated by a SOEhch row represents a child map, whereas each column represents
afiber of the SOM.

ventional SOM algorithm, in which the reference vector otlassification. The representation and classification of face
the winner, i.e.,wKV")' is regarded as the initial state ofimage sets are examples of this. Figure 4 shows the map
v Consequently the child maps are organized figca-  of faces generated by a SGMIn this case, every episode
ing one another via the parent map, thus representing thensists of a set of facial images taken from various angles.
fibers naturally. Note that thieth reference uniwwk is a  As a result, the continuous change in camera angle is rep-
tensor of rank 2, and the entire SGN& represented by a resented by the child maps, whereas each fiber represents a
tensor of rank 3. set of face images taken from the same angle.
Shape classification is another typical application for the

SOM?. Figure 5 shows an example, where every contour
3 Applications is regarded as an episode, each data vector of which rep-

resents thex — y coordinate of a dot. Figure 5 (b) shows

Adaptive control is one of the typical application fields forth® map of the contours generated by a SOWhe result

the mnSOM. In this case, the mnSOM consists of an assesows that the intermediate child maps represent intermedi-

bly of neural network controllers. By training the mnSOM@te shapes, and the entire S&Mpresents the continuous

using various parameters of the target object, the mnSOffi@nge in the contours. Figure 5 (c) shows a more prac-

generates a map of controllers. Figure 3 shows the map @l case, in which a set of neural gas (NG) networks are

controllers for an inverted pendulum, the mass and lengfmPloyed instead of child SOMs.

of which vary. Since this map also represents the parameter

space of the pendulums, the mnSOM can select the appro-

priate controller module before taking over control. Fod Conclusion

example, if a given pendulum looks long and heavy, the

mnSOM can commence control using the controller modn this paper, two generalizations of the SOM are intro-

ule that appears most appropriate. Once after taking oveticed. The two methods can easily be combined, enabling

control, the best matching controller is selected as the wiarger networks to be built. If a user wishes to represent

ner. Further details of this method are given in [8]. a set of continuously changing input-output functions, the
The main application field for the SOMs manifold RBFxSOM? would be a good solution. In addition, these
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Figure 5: (a) The given set of contours of a map of shapes (b) The map of shapes generated By(@) $Ohap of faces
represented by a set of dots (The original map is one dimensional; due to space constraints it is however displayed over 4
lines.)

generalizations can be applied to many extensions of the Neural Information Processing — Letters and Reviews
SOM, such as the growing type, hierarchical type and so \ol.9, No.1, pp.15-22, 2005.

on. The combination with the growing type of SOMs pro{3] T. Furukawa, “SOM of SOMs: Self-organizing map
vides a more flexible representation of higher-order func- which maps a group of self-organizing map&gc-

tions. We are now applying this method to building intelli-  ture Notes in Computer Scienc®ol.3696, pp.391-
gence for autonomous agents. 396, 2005.

[4] T. Furukawa, “SOM as SOM of SOMs,"Proc. of
Acknowledgements WSOM2005pp.545-552, 2005.

ThIS Work was partla”y Supported by the 21st Centur¥5] T. Furukawa, “An extension SOM from ‘map’ to
Center of Excellence Program at Kyushu Institute of Tech- - ‘homotopy’,” Lecture Notes in Computer Science

nology (Center #J19) by MEXT of Japan. The work was  \/|.4232, pp.958-967, 2006.

also partially supported by a Grant-in-Aid for Scientific Re{g] T. Furukawa, “Generalization of the self-organizing

search (C) granted by MEXT of Japan. The facial images  map: From artificial neural networks to artificial cor-

in this paper have been used with permission of Softopia texes” Lecture Notes in Computer Sciend@!.4232,

Japan, Research and Development Division, HOIP Labo- pp.943-949, 2006.

ratory. [7] T. Furukawa, K. Tokunaga, K. Morishita and S. Yasui,
“Modular network SOM (mnSOM): From vector space
to function space,”Proc. of IJCNN2005 pp.1581—

References 1586. 2005.

o [8] T. Minatohara and T. Furukawa, “Self-organizing
[1] K. Tokunaga, T. Furukawa and S. Yasui, “Modular net- adaptive controllers: Application to the inverted pen-

work SOM: Extension of SOM to the realm of function
lum,” Proc. of WSOM2 .537-544, 2 .
space,Proc. of WSOM2003p.173-178, 2003. dulum,” Proc. of WSOM200%p.537-544, 2005
[2] K. Tokunaga, T. Furukawa and S. Yasui, “Modular net-
work SOM: Self-organizing maps in function space,”

Proceedings of the 6th International Workshop on Self-Organizing Maps (WSOM 2007)
Published by the Neuroinformatics Group, Bielefeld University, Germany, ISBN 978-3-00-022473-7
All contributions to WSOM 2007 are available online at: http://biecoll.ub.uni-bielefeld.de




