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Abstract— In this paper, we propose a conceptual
learning algorithm called the ‘self-organizing homotopy
(SOH)’ together with an implementation thereof. As in the
case of the SOM, our SOH organizes a homotopy in a self-
organizing manner by giving a set of data episodes. Thus
it is an extension of the SOM, moving from a ‘map’ to a
‘homotopy’. From a geometrical viewpoint, the SOH rep-
resents a set of (i.e. multiple) data distributions by a fiber
bundle, whereas the SOM represents a single data distribu-
tion by a manifold. Therefore, this paper also proposes the
concept of ‘fiber bundle learning” as an extension ofmani-
fold learning. One of the solutions to the SOH is SOM2, in
which every reference vector unit of the conventional SOM
is itself replaced by an SOM. Consequently SOM2 has the
ability to represent a fiber bundle, i.e. a product manifold,
by using a product space of SOM×SOM. It is also possible
to design SOMn to represent higher order fiber bundles. It
is expected that SOHs will play important roles in the fields
of pattern recognition, adaptive functions, context under-
standing, and others, in which nonlinear manifolds and the
homotopy play crucial roles.

1 Introduction

Kohonen’s self-organizing map (SOM) is capable of ac-
quiring a map from a high-dimensional data vector space
to a low-dimensional space, thus representing the distribu-
tion of given data vectors naturally. From a geometrical
viewpoint, the SOM is an unsupervised learning machine
which approximates the given data distribution by fitting a
low-dimensional nonlinear manifold. Therefore the SOM
incorporates two aspects, namely ‘map learning’ and ‘man-
ifold learning’.

If a map is continuously deformed to another map, this
continuous deformation between the two maps is called a
homotopy. Thus a homotopy is useful for representing the
continuous change of a set of data distributions, a set of
input-output functions, or a set of system dynamics, for ex-
ample, which are modulated continuously by the context or
the environment. Incorporating this concept, we propose
the novel concept of an unsupervised learning machine.
Such a learning machine, which is capable of acquiring a
homotopy from a series of data sets in a self-organizing
manner, is called a “self-organizing homotopy(SOH)”. As
in the case of the SOM, the SOH incorporates two aspects.

The first is “homotopy learning” and the second is “fiber
bundle learning”. A fiber bundle is a geometrical concept
representing a kind of product manifold, which consists of
a bundle of fibers connecting a series of congruent mani-
folds. If a manifold is deformed continuously then the en-
tire trajectory of the manifold forms a fiber bundle. There-
fore the fiber bundle is another mathematical aspect of the
SOH. In other words, an SOH is a learning machine which
represents a group of data distributions by a fiber bundle,
i.e. a series of manifolds, whereas the conventional SOM
represents a single data distribution by a manifold.

It is well known that the nonlinear manifold plays a cru-
cial role in many pattern classification tasks. Often a class
of data vectors is distributed in an inherent nonlinear man-
ifold, and different classes are distributed in different man-
ifolds. In such cases ‘pattern classification’ means deter-
mining the manifold, to which given data vectors should
belong. One of the most typical examples of this is face
image classification [1]. A set of face images of the same
person taken from various camera angles is known to form
a ‘face manifold’, because the continuous change in cam-
era angle causes a continuous change in the face images.
Since each set of face images corresponds to its inherent
face manifold, the essence of face image classification is to
determine the face manifold, to which a given face image
belongs.

In the above scenario, a manifold is obtained by chang-
ing the camera angle continuously, but there is another way
to obtain a manifold of face images. Suppose that the face
shape is flexible like a rubber mask. By stretching the rub-
ber mask, we can obtain another continuous change in the
face images, i.e. another manifold. The set of face images
taken from various view points and of various face shapes
forms a product manifold, which consists of a group of weft
manifolds (i.e. manifolds of various faces) and of a group
of warp manifolds (i.e. manifolds of camera angles). Thus
the entire geometric structure becomes a fiber bundle. This
is the reason why homotopy learning or fiber bundle learn-
ing is important.

Actually the importance of the concept has been recog-
nized in the field of the SOM. The adaptive subspace SOM
(ASSOM) and the self-organizing operator map (SOOM)
are examples of the architectures that can organize a ho-
motopy [2, 3]. However, ASSOM and SOOM deal with
linear cases only. Furthermore these algorithms do not
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Figure 1: The framework dealt with by SOH.

have the ability to represent fibers. One of the real solu-
tions to homotopy learning is the SOM2 proposed by the
author [4, 5, 6]. SOM2 has an arrayed structure of conven-
tional SOM modules (called ‘child SOMs’ or ‘ child maps’),
each of which represents a nonlinear manifold. At the
same time, the upper level of the SOM2 (called the ‘par-
ent SOM’ or ‘ parent map’) represents a continuous change
of the child maps. As a result, the entire SOM2 repre-
sents a product manifold created by the product of (child
SOM)×(parent SOM). In addition, a set of reference vec-
tors with the same index of child SOMs forms a continu-
ous string, namely, a fiber. Therefore SOM2 is capable of
representing a fiber bundle as well. In this paper, the the-
oretical framework of the SOH is first described. SOH is
a conceptual algorithm rather than a concrete one, because
some of its procedures are left to the users to implement.
After that the theory of and algorithm for the SOM2 are
presented as an actual implementation of the SOH. This is
followed by some simulation results.

2 Framework

First of all, let us clarify the framework of the situation
dealt with by the SOH. As is the case in the ASSOM,
episodesare the elemental units in homotopy learning. An
episode means a set of data vectors observed together, e.g.
measured from the same system or obtained in the same

context. LetDi = {xi,1, . . . , xi,J} be thei-th episode1, the
distribution of which is represented by a nonlinear mani-
fold Ui in the high-dimensional data spaceX. Suppose that
Di is generated by a mapx = φi(ξ) and a probability den-
sity function (pdf)p(ξ). Hereξ ∈ Ξ is a intrinsic (hidden)
variable andφi is a homeomorphic map fromΞ to Ui . Thus,

φi : Ξ −→ Ui (1)

ξ 7−→ x. (2)

In the case of face images,ξ andx mean the camera angle
and the corresponding face image respectively. For conve-
nience of explanation, let us assume thatΞ = I2 andp(ξ) is
a uniform distribution, i.e.p(x) = 1 (Figure 1). In this case,
Ui is a 2-dimensional nonlinear bounded manifold inX. In
this situation, the episodeDi can be obtained by repeating
trials J times withp(ξ) andφi(ξ).

Suppose we haveI episodes{D1, . . . ,DI }, each of
which is generated by the pdfp(ξ) and a set of maps
{φ1(ξ), . . . , φI (ξ)}. Note that p(ξ) is common for all
episodes. Furthermore, suppose that the{φi(ξ)} are repre-
sented by a continuous deformation of a map modulated by
an intrinsic (hidden) parameterθ ∈ Θ as follows.

φi(ξ) = Φ(ξ, θi) (3)

Φ(ξ, θ) is the homotopy underlying the phenomena, andΦ

maps the intrinsic product space, i.e., the product of the
intrinsic variable and the parameterΞ ×Θ to a fiber bundle
E.

Φ : Ξ × Θ −→ E (4)

In the case of face images,θ is the parameter that deter-
mines the face shape. Thus a 3D face shape is determined
by the intrinsic parameterθ, and then a map from a camera
angle to the corresponding 2D face image is determined.
Using the homotopyΦ(ξ, θ), a section of the fiber bundle
is obtained by fixingθ, while a fiberFξ is obtained by fix-
ing ξ. Figure 1 shows a case in which the dimension of the
intrinsic parameter spaceΘ is one, i.e.Θ = I . Furthermore,
suppose thatθ is also a random variable obeyingq(θ). We
can assumeq(θ) is a uniform distribution inI , i.e.q(θ) = 1,
without losing generality. Under these circumstances, we
obtain a set of parameters{θ1, . . . , θI } from I -number of tri-
als withq(θ), and then makingJ-number of trials withp(ξ)
for each parameter, we obtain an episode set{Di}. This is
the stochastic generation model of the episodes.

Using this mathematical framework, the aim of the SOH
is to estimate the homotopyΦ(ξ, θ) from the given episodes
in a self-organizing manner. Please note that the generation
model is presented to clarify and to simplify the situation
dealt with by SOH, and it is usually veiled under the phe-
nomena in the actual tasks.

1In this paper, subscripts denote indexes of episodes and data vectors,
while superscripts denote indexes of SOHs and SOMs. In addition, capital
letters denote the upper limits of the indexes. For example,I andJ denote
the upper limits of the indexesi and j respectively.
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3 The SOH Algorithm

We now introduce the ideal algorithm for an SOH, which
has the ability to represent a homotopyΨ(ξ, θ). ψθ(ξ) =

Ψ(ξ, θ) mapsΞ to a manifoldMθ.

Ψ : Ξ × Θ −→ E (5)

ψθ : Ξ −→ Mθ (6)

Mθ is a section ofE. We also assume that we have the
following two procedures, which can be used to construct
the SOH algorithm.

Procedure 1: Procedure 1is the algorithm for estimating
the intrinsic parameterθi of the episodeDi . If the manifold
Ui is known, then the estimated parameterθ̂i is given as

θ̂i = arg min
θ

L(Ui ,Mθ). (7)

Here L(Uθ,Mθ) is the distance between two homeomor-
phic manifolds generated by two homotopic mapsΦ and
Ψ. Thus,

L2(Ui ,Mθ) =

∫

ξ∈Ξ
‖Φ(ξ, θi) − Ψ(ξ, θ)‖2 p(ξ) dξ. (8)

HoweverUi , Φ(ξ, θ) andθi are all unknown in a real ex-
ample. It is therefore assumed that the episode mapφ̂i(ξ)
is estimated initially, before applying this procedure. The
distance between two manifolds is then estimated by

L̂2(Ui ,Mθ) =

∫

ξ∈Ξ

∥∥∥φ̂i(ξ) − Ψ(ξ, θ)
∥∥∥2

p(ξ) d(ξ). (9)

Using this estimated distance,Procedure 1can determine
θ̂i , which is regarded as ‘the best matchingθ’ or ‘ the winner
θ’ of the episodeDi .

Procedure 2: Procedure 2is the algorithm for estimat-
ing the map of each episode{φ̂i(ξ)} from the winner map
ψθ̂i

(ξ) = Ψ(ξ, θ̂i). From another point of view, this proce-
dure estimates where each fiber passes through the mani-
fold Ui .

We now describe the entire SOH algorithm, except for the
details of how the two procedures given above are imple-
mented. The algorithm consists of an iterative loop with 4
steps.

(i) Determining the winner sections

For every episodeDi , the estimated parameterθ̂i is
calculated byProcedure 1. The sectionMθ̂i

andψθ̂i

become respectively,the winner sectionandthe win-
ner mapof Di .

(ii) Estimating fibers and episode maps

UsingProcedure 2, the episode map̂φi(ξ) is estimated
from the winner mapψθ̂i

(ξ). This step also estimates
the positions where fibers pass throughUi .

(iii) Evaluating learning mass distribution
Learning massesmi(θ) are calculated using the neigh-
borhood function.

mi(θ) = h
(
‖θ − θ̂i‖

)
(10)

whereh(·) is the neighborhood function.
(iv) Updating the homotopy

Finally, the homotopy represented by the SOH is up-
dated so that it becomes the mass centre of the esti-
mated episode maps with the learning mass distribu-
tion.

Ψ(ξ, θ) :=
m1(θ)φ̂1(ξ) + · · · + mI (θ)φ̂I (ξ)

m1(θ) + · · · + mI (θ)
(11)

The algorithm iterates through these four steps reducing the
size of the neighborhood function until the network reaches
a steady state.

The four steps can be summarized as follows. In step (i),
the{θ̂i} are estimated by fixingΨ(ξ, θ) and{φ̂i(ξ)}, while in
step (ii), the{φ̂i(ξ)} are estimated by fixingΨ(ξ, θ) and{θ̂i}.
Finally in step (iii) and (iv),Ψ(ξ, θ) is updated by fixing
{φ̂i(ξ)} and{θ̂i}.

There are several ways to implementProcedures 1and
2, and this affects the performance of SOH. Sophisticated
algorithms may produce better results, but they may also
consume more computational time. The implementation
therefore depends on the users or tasks. One of the simplest
and fastest solutions is the SOM2 algorithm described in
the next section.

4 SOM2 Algorithm

In this section SOM2 is introduced as one of the actual im-
plementations of the SOH. The name “SOM2” is derived
from “SOM×SOM”, because it represents a product mani-
fold described by two levels of SOMs.

The architecture of SOM2 is an assembly of SOM mod-
ules arrayed on a lattice, like the reference vector units of
the conventional SOM. Each of these SOMs is called a
‘child SOM’, and the upper level of the SOM consisting
of child SOMs is called the ‘parent SOM’. The SOM2 in
Figure 2 (a) has 5 child SOMs, each of which represents an
individual manifold{M1, . . . ,M5}. In this case, the topol-
ogy of the parent SOM is one-dimensional, but of course
it is possible to have 2 or more dimensions. The parent
SOM is expected to represent a continuous change of maps
represented by the child SOMs, i.e. a homotopy.

Figure 2 (b) shows a simulation result after learning 3
episodes. In this case, 3 episodesD1, D2 andD3 are given,
which are distributed in square shape manifoldsU1, U2 and
U3. After learning these episodes, the SOM2 sorts the given
episodes so that they show a continuous change of the maps
naturally. In addition the SOM2 interpolates between the
given manifolds, such that intermediate child SOMs rep-
resent intermediate distributions between episodes. This
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means that these intermediate child SOMs generated their
maps where there were no data points. Furthermore we can
draw a set of strings, i.e.fibers, between the child SOMs,
by connecting the reference vectors with the same index.
Such fibers represent the gradual change of these mani-
folds. Therefore the SOM2 also represents a fiber bundle.
Note that the child SOMs are organized by mutual interac-
tions between themselves. If they were to construct their
maps independently, the SOM2 would not be able to make
the appropriate interpolations between given episodes.

Now let us suppose that we have an SOM2 with K child
SOMs, each of which hasL reference vectors. Thus there
areK × L reference vectors denoted as{wk,l}. Let Wk re-
fer to the jointed reference vectors of thek-th child SOM,
i.e. Wk = (wk,1, . . . ,wk,L). ThereforeWk represents thek-
th sectionMk of the fiber bundleE. Now suppose that we
have an additional set ofI child SOMs which are not built
into the SOM2 architecture (i.e. not shown in Figure 2).
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Figure 2: (a) The SOM2 architecture. (b) Results of esti-
mating a homotopy from 3 episodes using SOM2.
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Winner section

Episode dataset
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Figure 3: How to determine the winner section and the win-
ner fiber in SOM2

These child SOMs are expected to represent the estimated
episode maps. Let{vl

i} be the reference vectors of the ad-
ditional set of SOMs, thenVi denotes the jointed vectors
Vi = (v1

i , . . . , v
L
i ). Vi represents the distribution of thei-th

episode, i.e.Ui . This additional set of child SOMs is use-
ful only in the explanation of the algorithm. It is not at all
needed in the actual implementation thereof.

In the algorithm for SOM2, the mean square error be-
tween an episode and a child SOM is evaluated to esti-
mate the distance between them. This isProcedure 1of the
SOM2. In Procedure 2, the SOM2 executes the batch-SOM
algorithm only once to estimate each episode map. Using
these procedures, the SOM2 algorithm can be described as
follows.

(i) Determining the winner section
To determine the winner section of each episode, the
mean square error between data points and the closest
reference vectors is evaluated for every combination
of episode and child SOM. Letlk,∗i, j denote the winner
index ofxi, j in thek-th child SOM. Thus,

lk,∗i, j , arg min
l

ek,l
i, j (12)

ek,l
i, j ,

∥∥∥xi, j − wk,l
∥∥∥2
. (13)

Then the mean square error between thei-th episode
and thek-th Episode is defined as

Ek
i ,

1
J

J∑

j=1

ek(xi, j). (14)

The index of the winner child SOM, i.e. the winner
section, is determined as follows.

k∗i , arg min
k

Ek
i (15)

(ii) Estimating fibers and episode maps
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In the second step, the positions where fibers pass
through every section are estimated first. In SOM2,
data pointxi, j is assumed to belong to the nearest fiber
in the winner section. Thus the index of the winner
fiber l∗,∗i, j is denoted asl∗,∗i, j . This situation is depicted
in Figure 3. After determining the winner fibers, the
episode maps are estimated as follows.

vl
i =

J∑

j=1

βl
i, j xi, j (16)

In this equation,βl
i, j is the normalized learning rate

calculated from the neighborhood function of the
child SOM.

βi, j =
hc

[
dc(l, l

∗,∗
i, j ); σc(t))

]
∑J

j′=1 hc

[
dc(l, l

∗,∗
i, j′ ); σc(t)

] (17)

hc[l;σ] is the neighborhood function at the child level,
andσc(t) denotes the neighborhood size at the time of
calculationt. These formulas mean that the episode
mapVi is estimated by applying the batch-SOM algo-
rithm once, with the initial stateWk∗i .

(iii) Evaluating learning masses
In the third step, the learning rates at the parent level
are calculated.

αk
i =

hp

[
dp(k, k∗i ; σp(t))

]
∑I

i′=1 hp

[
dp(k, k∗i′ ); σp(t))

] (18)

hp[l;σ] and σp(t) are the neighborhood function of
the parent SOM and its size respectively.

(iv) Updating the homotopy
Finally all reference vectors are updated so that every
child SOM represents the mass centre of the episode
maps with the learning masses.

Wk =

I∑

i=1

αk
i Vi (19)

By combining (16) and (19), we obtain the following
update algorithm.

wk,l =

I∑

i=1

J∑

j=1

αk
i β

l
i, j xi, j (20)

Since (20) does not contain the episode map{vl
i}, we

can update SOM2 without estimating each episode
map{Vi}. We iterate through these steps, reducing the
neighborhood size until the network reaches a steady
state.

The above algorithm for SOM2 may sound very compli-
cated, but the reason for this is that it is described from the
viewpoint of the SOH. We can simplify the SOM2 algo-
rithm as follows.

(i) Child competition phase. The winner unit is deter-
mined by (13) within each child SOM for every data
vector.

(ii) Parent competition phase. The winner map is deter-
mined by (15) for every episode.

(iii) Evaluating child neighborhood phase. The neighbor-
hood function at the child level is evaluated by (17).

(iv) Evaluating parent neighborhood phase. The neigh-
borhood function at the parent level is evaluated by
(18).

(v) Updating phase. All reference vectors are updated by
(20).

The algorithm therefore has a nested structure of child and
parent levels.

Interestingly, it is also possible to construct an additional
nested structure, as in the nesting of Russian dolls. For
example, SOM2 can be a module of a meta-class of the
SOM. Thus SOM×SOM×SOM, i.e. SOM3, is also possible
[4]. In the case of SOM3, the update algorithm is described
as follows.

wl,m,n =

I∑

i=1

J∑

j=1

K∑

k=1

αl
i β

m
i, j γ

n
i, j,k xi, j,k (21)

(22)

Here αl
i , β

m
i, j and γn

i, j,k are the normalized neighborhood
functions at parent, child, and grandchild levels respec-
tively, given by

αl
i =

hα
[
dα(l, l∗i ), σα(t)

]

I∑

i′=1

hα
[
dα(l, l∗i′ ), σα(t)

]
(23)

βm
i, j =

hβ
[
dβ(m,m

∗,∗
i, j ), σβ(t)

]

J∑

j′=1

hβ
[
dβ(m,m

∗,∗
i, j′ ), σβ(t)

] (24)

γn
i, j,k =

hγ
[
dγ(n,n

∗,∗,∗
i, j,k ), σγ(t)

]

J∑

k′=1

hγ
[
dγ(n,n

∗,∗,∗
i, j,k′ ), σγ(t)

] . (25)

It is easy to extend then-th order case, namely SOMn, that
represents the (n− 1) order of a homotopy. In this context,
the conventional SOM is regarded as SOM1, while a single
reference vector unit (i.e. a Hebb neuron) corresponds to
SOM0. Therefore the conventional model is a member of
the SOMn family.

We can extend the SOM2 further. In the case of SOM2,
the architecture of both parent and child levels consists of
SOMs, but it is also possible to use neural gas (NG), radial
basis function (RBF), or other maps and manifolds repre-
senting networks [4]. For example, the architecture consist-
ing of a parent SOM and child NGs, known as NG×SOM,
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Figure 4: Map of 3D objects generated by an SOM2 constructed from 2D images. (a) 13 episodes used in the simulation
(thick boxes). Each 2D image is vectorized by jointing the (x, y) coordinates of mesh nodes. (b) The parent map represents
various 3D shapes. (c) and (d) Child maps represent various viewpoints.

would be a good solution if the topology of episodes are un-
known. NG×SOM also deals with the case in which every
data distribution does not form a manifold, e.g. a topology
with some branches or with some singular points. Grow-
ing type architectures are also available to use at the par-
ent and/or child level, and we are currently developing this
model.

5 Simulation results

In the first simulation, a map of 3D objects is generated by
SOM2 from sets of 2D images. We prepared 13 episodes of
2D images of 3D objects shown in Figure 4 (a). Each 2D
image is vectorized by giving (x, y) coordinates of the grid
points, i.e.x = (x1, y1, x2, y2, . . . , xN, yN). N is the num-
ber of grid points, withN = 81 in this simulation. After
learning these episodes, the parent SOM shows a map of
3D shapes (Figure 4 (b)). The SOM2 successfully interpo-
lates between the given objects, and the entire map repre-
sents a continuous change of the 3D shapes. Figure 4 (c)

and (d) are the child maps (indicated by thick boxes in Fig-
ure 4 (b)). Each child map shows a continuous change of
the viewpoint, by interpolating intermediate 2D images be-
tween the given ones. Note that the corresponding units of
child SOMs represent the view from the same angle.

Figure 5 is a map of faces generated by SOM2. In this
simulation, every episode consists of a set of facial images
of the same person taken from various view points. Since
the order of the images was randomly shuffled, no clues
were given as to camera angles. Sets of facial images of
12 people, namely 12 episodes, were given to an SOM2

without any image preprocessing. Every subject was taken
a set of photographs with 75× 75 pixels from 17 different
angles. Thus each episode consists of 17 data vectors, the
dimension of which is 5225.

The map shown in Figure 5 (a) is not the map of front
face images, but is a map of face manifolds. Figure 5 (b)
and (c) show the child maps. Both child maps have suc-
cessfully organized a continuous change of images based
on the camera angle. Furthermore, the corresponding units
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Figure 5: ‘Face map’ generated by SOM2. The parent map (a) and the child maps of face0 (b) and face11 (c).

of each child SOM represent the same camera angle. These
results are consistent in all child SOMs. Thus, it can be
concluded that the SOM2 represents a fiber bundle of face
images. These properties would be useful in simultaneous
recognition of both face and pose.

Figure 6 is a map of alphabet shapes organized by
NG×SOM. In this example, every alphabet shape is rep-
resented by a number of small dots, and the coordinate
of each dot is regarded as a data vector. Thus every
letter is resolved into 200 dots, then a set of coordi-
nates{(x1, y1), . . . , (x200, y200)} is regarded as an episode
observed from the letter. 26 handwritten letters, i.e. 26
episodes were given to the NG×SOM, and the SOM2 orga-
nized a map, in which similar shapes of letters were located
closer together in the map.

These simulation results were always consistent in every
trial, suggesting the robustness of this method.

6 Discussion

It is possible to design more sophisticated SOH algorithms
than SOM2. For example, the performance of estimating a
homotopy would be improved by using the iterative clos-
est point (ICP) algorithm. This type of SOH would be
expected to generate a better alphabet map. However, in-
serting an iterative process into the iteration of the SOH
algorithm may increase the calculation cost.

Though many manifold learning algoirthms have been
proposed, there are few fiber bundle learning algorithms as
far as the author has investigated. Therefore it is hard to
compare with other methods. One can use kernel methods,
auto-associative neural networks (sand-clock type multi-
layer perceptron), nonlinear-PCA and other types of mani-
fold learning algorithms as the modules of the SOH. In all
cases though, we need to build in a process of estimating
fibers, i.e. corresponding points between manifolds. With-
out this process, modules would express manifolds inde-
pendently, and the intermediate modules would never rep-
resent intermediate manifolds. The mutual interactions be-
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Figure 6: Map of alphabet shapes generated by NG×SOM

tween child modules are thus essential for estimating a fiber
bundle.

Apart from the SOH, it seems possible to design other
architectures representing a homotopy. For example, multi-
layer perceptrons (MLPs) with plan units or parametric bias
units can represent a set of functions by switching the addi-
tional units [7]. However there is no theoretical assurance
that the network represents intermediate function shapes by
setting the intermediate values of the additional units. Sim-
ulation results have also shown that these methods do not
represent a homotopy well [8]. The modular network SOM
with MLP modules can deal with a homotopy [9, 10, 11],
and would be a good solution in some cases. But its ability
is limited to the cases when trivial fibers exist in the data
distributions. Some other architectures may work well in
similar easy cases. However, iterative and reciprocal esti-
mation of sections and fibers, like SOH, would be required
to solve the problem in general cases.

7 Conclusion

In this paper, novel learning concepts of ‘homotopy learn-
ing’ and ‘fiber bundle learning’ have been proposed. We
have also proposed the SOH algorithm, which is the theo-
retical description of the learning scheme. One of the so-
lutions for the SOH is SOM2, which has previously been
proposed by the author. In this paper, the SOM2 algorithm
has been re-introduced from the viewpoint of the SOH.
The concept of SOM2 has been generalized to the case
of SOMn, which comprises the conventional SOM case
as SOM1. SOH and its variations are not only applicable
to pattern classification tasks, but would also be useful in
cases related to multi-functions, multi-systems and others,

modulated by the context or the environment.
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