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Abstract— In this paper, we propose a conceptuallhe first is ‘homotopy learningand the second isfiber
learning algorithm called thesélf-organizing homotopy bundle learning. A fiber bundle is a geometrical concept
(SOH)’ together with an implementation thereof. As in theepresenting a kind of product manifold, which consists of
case of the SOM, our SOH organizes a homotopy in a sel& bundle of fibers connecting a series of congruent mani-
organizing manner by giving a set of data episodes. Thdslds. If a manifold is deformed continuously then the en-
it is an extension of the SOM, moving from map to a tire trajectory of the manifold forms a fiber bundle. There-
‘homotopy From a geometrical viewpoint, the SOH rep-fore the fiber bundle is another mathematical aspect of the
resents a set of (i.e. multiple) data distributions by a fibeéBOH. In other words, an SOH is a learning machine which
bundle, whereas the SOM represents a single data distribepresents a group of data distributions by a fiber bundle,
tion by a manifold. Therefore, this paper also proposes the. a series of manifolds, whereas the conventional SOM
concept of fiber bundle learningas an extension ahani- represents a single data distribution by a manifold.
fold learning One of the solutions to the SOH is SGNh It is well known that the nonlinear manifold plays a cru-
which every reference vector unit of the conventional SOM| role in many pattern classification tasks. Often a class
is itself replaced by an SOM. Consequently SOMs the  of data vectors is distributed in an inherent nonlinear man-
ability to represent a fiber bundle, i.e. a product manifold¢o|q, and diferent classes are distributed inffdient man-
by using a product space of SOM8OM. Itis also possible jfo|ds. In such cases ‘pattern classification’ means deter-
to design SOMto represent higher order fiber bundles. Ityining the manifold, to which given data vectors should
is expected that SQHS will pla_y |mp0rtz_int rolesin the f'e|d%elong. One of the most typical examples of this is face
of pattern recognition, adaptive functions, context Unde'image classification [1]. A set of face images of the same
standing, and other;, in which nonlinear manifolds and tr]@erson taken from various camera angles is known to form
homotopy play crucial roles. a ‘face manifold’, because the continuous change in cam-
era angle causes a continuous change in the face images.
Since each set of face images corresponds to its inherent
face manifold, the essence of face image classification is to
Kohonen's self-organizing map (SOM) is capable of acggfg:]rgéne the face manifold, to which a given face image
quiring a map from a high-dimensional data vector space '
to a low-dimensional space, thus representing the distribu- N the above scenario, a manifold is obtained by chang-
tion of given data vectors naturally. From a geometricdld the camera angle continuously, but there is another way
viewpoint, the SOM is an unsupervised learning machin& obtain a manifold of face images. Suppose that the face
which approximates the given data distribution by fitting &hape is flexible like a rubber mask. By stretching the rub-
low-dimensional nonlinear manifold. Therefore the SOMP€r mask, we can obtain another continuous change in the
incorporates two aspects, name|y ‘map |earning’ and ‘marﬁace images, i.e. another manifold. The set of face images
ifold learning’. taken from various view points and of various face shapes

If a map is continuously deformed to another map, thi€orms a product manifold, which consists of a group of weft
continuous deformation between the two maps is called@@nifolds (i.e. manifolds of various faces) and of a group
homotopy Thus a homotopy is useful for representing th@f warp manifolds (i.e. manifolds of camera angles). Thus
continuous change of a set of data distributions, a set §i€ entire geometric structure becomes a fiber bundle. This
input-output functions, or a set of system dynamics, for el the reason why homotopy learning or fiber bundle learn-
ample, which are modulated continuously by the context dRd IS Important.
the environment. Incorporating this concept, we propose Actually the importance of the concept has been recog-
the novel concept of an unsupervised learning machineized in the field of the SOM. The adaptive subspace SOM
Such a learning machine, which is capable of acquiring GASSOM) and the self-organizing operator map (SOOM)
homotopy from a series of data sets in a self-organizingre examples of the architectures that can organize a ho-
manner, is called aself-organizing homotop§SOH)”. As  motopy [2, 3]. However, ASSOM and SOOM deal with
in the case of the SOM, the SOH incorporates two aspectmear cases only. Furthermore these algorithms do not

1 Introduction



Fiber bundle E context. LetD; = {X1,..., X} be thei-th episodé, the
distribution of which is represented by a nonlinear mani-
fold U; in the high-dimensional data spa¥eSuppose that
D; is generated by a map= ¢;(¢£) and a probability den-
sity function (pdf)p(¢). Hereé € E is a intrinsic (hidden)
variable an@; is a homeomorphic map froito U;. Thus,

g
! ¢ E— U 1)
I Er— X, (2)
% :
| In the case of face imagesandx mean the camera angle
' and the corresponding face image respectively. For conve-
¥ nience of explanation, let us assume tAat 12 andp(¢) is

a uniform distribution, i.ep(x) = 1 (Figure 1). In this case,
U; is a 2-dimensional nonlinear bounded manifolinln
this situation, the episode; can be obtained by repeating
trials J times with p(£) andg;(£).

Suppose we havé episodes{D,,...,D}, each of
which is generated by the pdi(¢) and a set of maps
{91(8),...,01(£)}). Note that p(¢) is common for all
episodes. Furthermore, suppose that{th&)} are repre-
sented by a continuous deformation of a map modulated by
an intrinsic (hidden) parametére © as follows.

$i(€) = ©(¢, 6) ©))

] _ ] D(¢, ) is the homotopy underlying the phenomena, énd
Figure 1: The framework dealt with by SOH. maps the intrinsic product space, i.e., the product of the
intrinsic variable and the parameftex @ to a fiber bundle

Intrinsic parameter space @

Homotopy e
x=P(,0) Base space

have the ability to represent fibers. One of the real SO|LE'
tions to homotopy learning is the SGNproposed by the O Ex0 - E 4)
author [4, 5, 6]. SOM has an arrayed structure of conven-
tional SOM modules (calleathild SOMsor ‘ child map$), In the case of face image8,is the parameter that deter-
each of which represents a nonlinear manifold. At thenines the face shape. Thus a 3D face shape is determined
same time, the upper level of the S@Ntalled the par- by the intrinsic parameter and then a map from a camera
ent SOMor ‘ parent map) represents a continuous changeangle to the corresponding 2D face image is determined.
of the child maps. As a result, the entire S®képre- Using the homotopyb(£, 6), a section of the fiber bundle
sents a product manifold created by the productcbil§ is obtained by fixing, while a fiberF; is obtained by fix-
SOMx(parent SOM. In addition, a set of reference vec-ing &. Figure 1 shows a case in which the dimension of the
tors with the same index of child SOMs forms a continuintrinsic parameter spa&is one, i.e® = |. Furthermore,
ous string, namely, a fiber. Therefore S®M capable of suppose that is also a random variable obeyingp). We
representing a fiber bundle as well. In this paper, the thean assumg() is a uniform distribution ifl, i.e.q(8) = 1,
oretical framework of the SOH is first described. SOH isvithout losing generality. Under these circumstances, we
a conceptual algorithm rather than a concrete one, becausistain a set of parametei@, . . ., 6;} from I-number of tri-
some of its procedures are left to the users to implemendls withq(6), and then making-number of trials withp(¢)
After that the theory of and algorithm for the SGMre  for each parameter, we obtain an episode{Bgt This is
presented as an actual implementation of the SOH. Thistise stochastic generation model of the episodes.
followed by some simulation results. Using this mathematical framework, the aim of the SOH

is to estimate the homotom(&, ) from the given episodes

in a self-organizing manner. Please note that the generation
2 Framework model is presented to clarify and to simplify the situation

) ) .. dealt with by SOH, and it is usually veiled under the phe-
First of.aII, let us clarify the.framework Qf the situation ,omena in the actual tasks.
dealt with by the SOH. As is the case in the ASSOM; Y. —— o ( enisod i
; e ; n this paper, subscripts denote indexes of episodes and data vectors,
ep!sodesare the elemental units in homotopy leammg' Anwhile superscripts denote indexes of SOHs and SOMs. In addition, capital
episode means a set of data vectors observed together, @hrs denote the upper limits of the indexes. For exangadJ denote

measured from the same system or obtained in the same upper limits of the indexdsand j respectively.




3 The SOH Algorithm (i) Evaluating learning mass distribution
Learning massesy () are calculated using the neigh-
We now introduce the ideal algorithm for an SOH, which borhood function.
has the ability to represent a homotopyé, 6). (&) = R
¥(¢, ) mapsE to a manifoldM,. m(6) = h(llo - &) (10)

Y:Ex0 —E (5) whereh(:) is the neighborhood function.
(6) (iv) Updating the homotopy

Finally, the homotopy represented by the SOH is up-
My is a section ofE. We also assume that we have the dated so that it becomes the mass centre of the esti-
following two procedures, which can be used to construct mated episode maps with the learning mass distribu-
the SOH algorithm. tion.

l//e:E—)Mg

my(6)¢ o+ my(0)¢
Procedure 1: Procedure iis the algorithm for estimating Y(£.0) = & )rﬁig; I — I m.l EQ;¢I(§) (11)

the intrinsic parametes; of the episodd;. If the manifold
U; is known, then the estimated parameigs given as The algorithm iterates through these four steps reducing the
. ) size of the neighborhood function until the network reaches
6 = arg minL(U;, My). (7)  asteady state.
¢ The four steps can be summarized as follows. In step (i),
Here L(Uy, My) is the distance between two homeomorthe {6} are estimated by fixing(, 6) and{i(£)}, while in
phic manifolds generated by two homotopic mapsand  step (i), the{d;(¢)} are estimated by fixing (¢, 6) and{6;}.
Y. Thus, Finally in step (iii) and (iv),'¥(¢, 0) is updated by fixing
{¢i(£)} and{6;}.
L%(Ui, My) = f D, 6) — P, 0)° p¢) dé.  (8) There are several ways to implemétrbcedures Jand
§e2 2, and this #fects the performance of SOH. Sophisticated
HoweverU;, ®(£,6) andé; are all unknown in a real ex- algorithms may produce better results, but they may also
ample. It is therefore assumed that the episode #a@) CONsume more computational time. The implementation
is estimated initially, before applying this procedure. Théherefore depends on the users or tasks. One of the simplest

the next section.

M) = [ 4@ - weol o do. ©

4 SOM? Algorithm
Using this estimated distancBrocedure 1can determine
6;, which is regarded ashe best matching or ‘ the winner In this section SOMlis introduced as one of the actual im-
0’ of the episodeD;. plementations of the SOH. The name “S&Ns derived
from “SOMxSOM”, because it represents a product mani-

Procedure 2: Procedure 2is the algorithm for estimat- fold described by two levels of SOMs.
ing the map of each episodé;(£)} from the winner map  The architecture of SORis an assembly of SOM mod-
v (€) = P&, éi)_ From another point of view, this proce- ules arrayed on a lattice, like the reference vector units of

dure estimates where each fiber passes through the mdhie conventional SOM. Each of these SOMs is called a
fold U;. ‘child SOM, and the upper level of the SOM consisting

of child SOMs is called theparent SOM The SOM in

We now describe the entire SOH algorithm, except for thEigure 2 (a) has 5 child SOMs, each of which represents an
details of how the two procedures given above are impléndividual manifold{M?,. .., M®}. In this case, the topol-

mented. The algorithm consists of an iterative loop with #gy of the parent SOM is one-dimensional, but of course
steps. it is possible to have 2 or more dimensions. The parent

. - . . SOM is expected to represent a continuous change of maps

(i) Determining the winner sections . represented by the child SOMs, i.e. a homotopy.
For every episod®;, the estimated parametér is Figure 2 (b) shows a simulation result after learning 3
calculated byProcedure 1 The sectionM andy;  episodes. In this case, 3 episodis D, andDs are given,
become respectivelyhe winner sectiomndthe win-  \hich are distributed in square shape manifdJdsU, and
ner mapof D;. Us. After learning these episodes, the S&ddrts the given

(if) Estimating fibers and episode maps episodes so that they show a continuous change of the maps
UsingProcedure 2the episode mapi(¢) is estimated naturally. In addition the SORinterpolates between the
from the winner mapy; (€). This step also estimates given manifolds, such that intermediate child SOMs rep-
the positions where fibers pass througjh resent intermediate distributions between episodes. This




means that these intermediate child SOMs generated their
maps where there were no data points. Furthermore we can
draw a set of strings, i.dibers between the child SOMs,

by connecting the reference vectors with the same index.
Such fibers represent the gradual change of these mani-
folds. Therefore the SORalso represents a fiber bundle.
Note that the child SOMs are organized by mutual interac-
tions between themselves. If they were to construct their

Winner fiber
. e/ =

L Episode dataset

N
——— Winner section

maps independently, the SGMould not be able to make
the appropriate interpolations between given episodes.

Now let us suppose that we have an SOMth K child

SOMs, each of which hds reference vectors. Thus there

areK x L reference vectors denoted @g'}. Let WK re-
fer to the jointed reference vectors of tkeh child SOM,
i.e. WK = (wk?, ..., wkL). ThereforeWX represents thie-
th sectionMX of the fiber bundleE. Now suppose that we
have an additional set ¢fchild SOMs which are not built

into the SOM architecture (i.e. not shown in Figure 2).

Child SOMs
\ \ | \ |
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[Y1 | | [Sf2[ | Y3
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Figure 2: (a) The SORlarchitecture. (b) Results of esti-
mating a homotopy from 3 episodes using SOM

Intrinsic space | .-

s

Figure 3: How to determine the winner section and the win-
ner fiber in SOM

These child SOMs are expected to represent the estimated
episode maps. qu:} be the reference vectors of the ad-
ditional set of SOMs, theW; denotes the jointed vectors
Vi = (Vi,...,Vvh). V represents the distribution of tieh
episode, i.eU;. This additional set of child SOMs is use-
ful only in the explanation of the algorithm. It is not at all
needed in the actual implementation thereof.

In the algorithm for SOM, the mean square error be-
tween an episode and a child SOM is evaluated to esti-
mate the distance between them. ThiBiecedure lof the
SOM?. In Procedure 2the SOM executes the batch-SOM
algorithm only once to estimate each episode map. Using
these procedures, the SGMigorithm can be described as
follows.

(i) Determining the winner section
To determine the winner section of each episode, the
mean square error between data points and the closest
reference vectors is evaluated for every combination
of episode and child SOM. Lei‘fj* denote the winner
index ofx; j in thek-th child SOM. Thus,

Ilkl* 2 argI minelk”jI (12)

A

Y 3)

Then the mean square error betweenitkie episode
and thek-th Episode is defined as

J
Zek(xi,j)~
=1

The index of the winner child SOM, i.e. the winner
section, is determined as follows.

Xi’j - Wk’|||2 .

EX 2 (14)

ol

k2 argkminEik (15)

(i) Estimating fibers and episode maps




In the second step, the positions where fibers pasgi) Child competition phase The winner unit is deter-
through every section are estimated first. In SOM mined by (13) within each child SOM for every data
data poink; ; is assumed to belong to the nearest fiber  vector.

in the winner section. Thus the index of the winner (i) Parent competition phaseThe winner map is deter-

fiber " is denoted a‘q This situation is depicted mined by (15) for every episode.
in F|gure 3. After determlnlng the winner fibers, theiiiy Evaluating child neighborhood phas&he neighbor-
episode maps are estimated as follows. hood function at the child level is evaluated by (17).
3 (iv) Evaluating parent neighborhood phaseThe neigh-
ZBI (X (16) borhood function at the parent level is evaluated by
j=1 (18)-
(v) Updating phaseAll reference vectors are updated by
In this equatlon,B' is the normalized learning rate (20).
calculated from the neighborhood function of the
child SOM. The algorithm therefore has a nested structure of child and
parent levels.
he [dc(l, I *) (rc(t))] Interestingly, it is also possible to construct an additional
Bij =3 p” (17)  nested structure, as in the nesting of Russian dolls. For
AL [dC(l’li,j’)’ O'C(t)] example, SOM can be a module of a meta-class of the

hc[l; o] is the neighborhood function at the child level, SOM. Thus SOMSOMXSOM, i.e. SOM, i also possible

ando(t) denotes the neighborhood size at the time O[(l] In the case of SOM| the update algorithm is described
calculationt. These formulas mean that the episodé’?IS follows.

mapV; is estimated by applying the batch-SOM algo- I J K

rithm once, with the initial statevs . Z Z @ BV Xi ik (21)
(iii) Evaluating learning masses i=1 j=1 k=1

In the third step, the learning rates at the parent level (22)

are calculated.

.. Hereal, g andy!., are the normalized neighborhood
k _ hp[dp(k’ki ' Up(t))] 18 functiolns :':ijt parer;‘cj,’ child, and grandchild levels respec-
L S hp[da(k K); ()] tively, given by
ho[l; o] and o p(t) are the neighborhood function of . h [da(017), oa(D)]
the parent SOM and its size respectively. @ = (23)
(iv) Updating the homotopy Zh [do(1,12), a(®)]

Finally all reference vectors are updated so that every =
child SOM represents the mass centre of the episode .
maps with the learning masses. m_ ¥ [ m ). 750 (24)

J
2 heds(m ). o0
=1

|
= Z kv, (19)
) D [dmn). o]
By combining (16) and (19), we obtain the following Yijk = : (25)
update algorithm. Z h dy(n, nl*J*k*) o-y(t)]
| J
= Z Z o Bl % (20)  |tis easy to extend the-th order case, namely SOWthat
i=1 j=1 represents then(— 1) order of a homotopy. In this context,

. . . the conventional SOM is regarded as SOMhile a single
Since (30?[ doseosﬂl;llot.tc;]ont?m tthe etplsode Tﬁp yved reference vector unit (i.e. a Hebb neuron) corresponds to
can update - without estimating each epiSode 55\ p - herefore the conventional model is a member of
map{V;}. We iterate through these steps, reducing thﬁ]e SOM family.

gg?ehborhood size until the network reaches a stea Y We can extend the SOMurther. In the case of SOk
' the architecture of both parent and child levels consists of
The above algorithm for SORmay sound very compli- SOMs, but it is also possible to use neural gas (NG), radial
cated, but the reason for this is that it is described from theasis function (RBF), or other maps and manifolds repre-
viewpoint of the SOH. We can simplify the SGMilgo- senting networks [4]. For example, the architecture consist-
rithm as follows. ing of a parent SOM and child NGs, known as N&OM,
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Figure 4: Map of 3D objects generated by an Stddnstructed from 2D images. (a) 13 episodes used in the simulation
(thick boxes). Each 2D image is vectorized by jointing the/) coordinates of mesh nodes. (b) The parent map represents
various 3D shapes. (c) and (d) Child maps represent various viewpoints.

would be a good solution if the topology of episodes are urand (d) are the child maps (indicated by thick boxes in Fig-
known. NGxSOM also deals with the case in which everyure 4 (b)). Each child map shows a continuous change of
data distribution does not form a manifold, e.g. a topologthe viewpoint, by interpolating intermediate 2D images be-
with some branches or with some singular points. Growtween the given ones. Note that the corresponding units of
ing type architectures are also available to use at the pahild SOMs represent the view from the same angle.

ent andor child level, and we are currently developing this Figure 5 is a map of faces generated by SOM this

model. simulation, every episode consists of a set of facial images
of the same person taken from various view points. Since
5 Simulation results the order of the images was randomly gtad, no clues

were given as to camera angles. Sets of facial images of

In the first simulation, a map of 3D objects is generated by2 People, namely 12 episodes, were given to an SoMm
SOM® from sets of 2D images. We prepared 13 episodes ¥ithout any image preprocessing. Every subject was taken
2D images of 3D objects shown in Figure 4 (a). Each 2% Set of photographs with 2675 pixels from 17 dferent
image is vectorized by giving«(y) coordinates of the grid angles._ Thus ea_ch gplsode consists of 17 data vectors, the
points, i.e.X = (X1, Y1, X2, Y2, - - .. X, Yn). N is the num-  dimension of which is 5225.

ber of grid points, withN = 81 in this simulation. After The map shown in Figure 5 (a) is not the map of front
learning these episodes, the parent SOM shows a mapfate images, but is a map of face manifolds. Figure 5 (b)
3D shapes (Figure 4 (b)). The SGMuccessfully interpo- and (c) show the child maps. Both child maps have suc-
lates between the given objects, and the entire map repressfully organized a continuous change of images based
sents a continuous change of the 3D shapes. Figure 4 (@) the camera angle. Furthermore, the corresponding units



(b)

Figure 5: ‘Face map’ generated by SBNThe parent map (a) and the child maps of face0 (b) and face11 (c).

of each child SOM represent the same camera angle. Th3e Discussion
results are consistent in all child SOMs. Thus, it can be
concluded that the SOMrepresents a fiber bundle of facelt is possible to design more sophisticated SOH algorithms
images. These properties would be useful in simultaneotisan SOM. For example, the performance of estimating a
recognition of both face and pose. homotopy would be improved by using the iterative clos-
est point (ICP) algorithm. This type of SOH would be
expected to generate a better alphabet map. However, in-
Figure 6 is a map of alphabet shapes organized Iserting an iterative process into the iteration of the SOH
NGxSOM. In this example, every alphabet shape is remlgorithm may increase the calculation cost.
resented by a number of small dots, and the coordinate Though many manifold learning algoirthms have been
of each dot is regarded as a data vector. Thus evepyoposed, there are few fiber bundle learning algorithms as
letter is resolved into 200 dots, then a set of coordifar as the author has investigated. Therefore it is hard to
nates{(x,y1), ..., (X00 Y200)} is regarded as an episodecompare with other methods. One can use kernel methods,
observed from the letter. 26 handwritten letters, i.e. 2@uto-associative neural networks (sand-clock type multi-
episodes were given to the MSOM, and the SORlorga-  layer perceptron), nonlinear-PCA and other types of mani-
nized a map, in which similar shapes of letters were locatefdid learning algorithms as the modules of the SOH. In all
closer together in the map. cases though, we need to build in a process of estimating
fibers, i.e. corresponding points between manifolds. With-
out this process, modules would express manifolds inde-
These simulation results were always consistent in evependently, and the intermediate modules would never rep-
trial, suggesting the robustness of this method. resent intermediate manifolds. The mutual interactions be-
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