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Abstract— Local Factor Analysis (LFA) is known as
more general and powerful than Gaussian Mixture Model
(GMM) in unsupervised learning via local subspace struc-
ture analysis. In the literature of text-independent speaker
identification, GMM has been widely used and investi-
gated, with some preprocessing and postprocessing ap-
proaches, while there still lacks efforts on LFA for this task.
In pursuit of fast implementation for LFA modeling, this
paper focuses on the Bayesian Ying-Yang automatic learn-
ing with data smoothing based regularization (BYY-A),
which makes automatic model selection during parameter
learning. Furthermore for sequence classification, we de-
sign and analyze a three-level voting combination, namely
sequence, classifier and committee, respectively. Different
combination approaches are designed with variant sequen-
tial topologies and voting schemes. Experimental results
on the KING speech corpus demonstrate the proposed ap-
proaches’ effectiveness and potentials.

1 Introduction
Speaker recognition, well known as one of the most im-
portant topics in biometrics, is a process to determine
speakers’ identities based their voice, whose two most fo-
cused studies are speaker identification and verification
[2, 3, 4, 9]. Speaker identification is to classify an unknown
voice token as one out of reference speakers, whereas
speaker verification is to accept or reject an identity claim.
Moreover, a speaker recognition system often works in ei-
ther of two operating modes: text dependent, where the
same text is required for both training and testing, and text
independent, where arbitrary text is allowed to utter with-
out restriction [2, 4]. In this paper, we focus on the task of
text-independent speaker identification.

In the literature, there have been many efforts using vari-
ant models for this task [2, 3, 4, 9], such as multilayer per-
ceptrons (MLP), k-nearest-neighbors (KNN), Vector Quan-
tization (VQ) or K-means algorithm, Gaussian Mixture
Model (GMM), etc., some of which are also combined
together with other techniques including committee vot-
ing, Mixture of Experts (ME), boosting methods, and so
forth. Out of them, from the view of unsupervised mod-
eling, GMM has been widely investigated and shown ad-
vantages over some simple models like K-means algorithm
with more accurate parametric modeling and better results.

Local Factor Analysis (LFA) combines GMM with one
well-known dimension reduction approach named Factor
Analysis (FA) [5, 10, 13]. Instead of describing each
local component roughly as Gaussian, LFA tries to fur-
ther model each component by a local lower-dimensional
subspace for more accurate description and better gener-
alization [5, 12, 13]. Fixed its model configuration in-
cluding the component number k and local hidden di-
mensions {ml}k

l=1, LFA can be efficiently trained via a
maximum-likelihood (ML) way, usually implemented by
the expectation-maximization (EM) algorithm [5, 7].

One significant problem for LFA is to select both com-
ponent number k and hidden dimensions {ml}k

l=1, which
is a typical model selection problem. In the literature of
LFA model selection, the conventional two-phase proce-
dure performs with the help of one of typical statistical cri-
teria via maximum-likelihood learning, while usually suf-
fering a greatly huge computational cost due to multiple
implementations through all candidate models [13]. Un-
der the motivation of saving costs, we focus on the au-
tomatic Bayesian Ying-Yang harmony learning with data
smoothing based regularization, shortly denoted BYY-A
[13], which starts with a large enough number of compo-
nents and automatically implements model selection during
parameter learning.

To make sequence classification, we adopt and design
three cascading combination levels. In the first point, col-
lecting one trained LFA model on each speaker’s data, one
classifier forms one combination. In the second, with dif-
ferent initializations and implementations, different clas-
sifiers are obtained to group a stochastic committee com-
bination. Furthermore, to make the sequence classifica-
tion, results on all samples along the sequence are com-
bined [3, 8]. Importantly, although the sequential topol-
ogy between classifier’s and committee’s combination is
fixed, i.e. the former should be in advance of the latter,
different schedules for the sequence combination result in
variant sequential hybrid schemes and structures. In this
paper, we list three sequential topologies and investigate
ten different combination approaches, facilitated with sev-
eral voting schemes. Compared with the work in [3], the
proposed approaches are applied on the KING database,
a benchmark speech corpus designed especially for text-
independent speaker identification.

The rest of this paper is organized as follows. In Sec-
tion 2, we review LFA and its model selection problem.



Section 3 briefly describes BYY automatic harmony learn-
ing algorithm with data smoothing based regularization on
LFA modeling (BYY-A). Consideration of different three-
level combinations is illustrated and analyzed in Section
4. After comparative speaker identification experiments on
KING corpus database in Section 5, we draw concluding
remarks and prospect future work in Section 6.

2 Local Factor Analysis Model
Local Factor Analysis (LFA), or also named Mixture of
Factor Analyzers (MFA), is a useful multivariate unsuper-
vised learning model, exploring not only clusters but also
local subspaces with wide applications in pattern recog-
nition, bio-informatics, and financial engineering [5, 13].
Provided d-dimensional observed vector x, LFA assumes
that its distribution follows a mixture of k underlying com-
ponents p(x) =

∑k
l=1 αlp(x|l), where p(x|l) is the proba-

bility density of the l-th component, and αl is the l-th com-
ponent’s prior with αl ≥ 0 and

∑k
l=1 αl = 1. Furthermore,

each component, instead of regarded roughly as Gaussian
in Gaussian Mixture Model (GMM), is assumed as a Fac-
tor Analysis (FA) [5, 10], where observed data are regarded
as generated from lower-dimensional hidden independent
Gaussian factors y via linear transform [7]:

p(x|y, l) = G(x|Aly + µl,Ψl), p(y|l) = G(y|0, Iml),

p(x|l) =

∫
p(x|y, l)p(y|l)dy = G(x|µl,AlA

T
l + Ψl), (1)

where y is the ml-dimensional unobservable latent vec-
tor, Al is the d × ml-dimensional loading matrix, µl is
the d-dimensional mean vector, Ψl is the diagonal co-
variance matrix for noises. On a set of observed data
{xt}N

t=1, given the number of individual Gaussian com-
ponents k and the local factor numbers {ml}k

l=1, one
widely used method to estimate the unknown parame-
ters Θ = {αl,Al, µl,Ψl}k

l=1 is the maximum-likelihood
(ML) learning, which can be effectively implemented by
expectation-maximization (EM) algorithm [5, 7, 10].

One important remaining problem for LFA is to de-
termine both the component number k and local hid-
den dimensions {ml}k

l=1, which is a typical model se-
lection problem. Conventionally, this model selection
task can be addressed in a two-phase procedure in help
of J(Θ̂, k, {ml}k

l=1), i.e., one of typical existing statis-
tical model selection criteria such as AIC, CAIC, BIC
which coincides with MDL, and cross-validation, etc
[13]. In the first phase, both a range [kmin, kmax] for
k and a range [mmin,mmax] for ml are predetermined
to set up a domain M assumed to contain the optimal
k∗, {m∗

l }k∗
l=1. Then for each model scale {k, {ml}k

l=1},
parameters Θ are estimated usually by EM algorithm
[5, 7, 10]. In the second phase, model selection is made
through obtained candidate models such that: k̂, ˆ{ml} =
arg mink,{ml}{J(Θ̂, k, {ml}), {k, {ml}} ∈ M}. Thus,
totally at least

∑kmax

k=kmin
(mmax − mmin + 1)k times es-

timates are needed.

3 BYY Automatic LFA Learning

Since the two-phase model selection procedure is compu-
tationally extensive and thus impractical in many real ap-
plications, alternatively, several efforts have been made on
fast seeking model selection. One type of fast implementa-
tion is in a sense that with its scale initialized large enough
to include the correct one, learning on a model will not
only determine parameters but also automatically shrink
its scale appropriately, while discarding those extra sub-
structures. One representative effort following this type is
Bayesian Ying-Yang (BYY) harmony automatic learning
[13, 14, 15].

Firstly proposed as a unified statistical learning frame-
work firstly in 1994 and systematically developed in the
past decade [14], BYY harmony learning consists of a gen-
eral BYY harmony system and a fundamental harmony
learning principle as a unified guide for developing new
regularization techniques, a new class of criteria for model
selection, and a new family of algorithms that perform pa-
rameter learning with automatic model selection. Readers
are referred to [13] for a recent systematic review. Applied
on LFA, to remove the rotational indeterminacy, BYY har-
mony learning considers the following alternative but prob-
abilistically equivalent model with l-th component’s distri-
bution as follows:

p(l) = αl, p(y|l) = G(y|0,Λl),
p(x|y, l) = G(x|Uly + µl,Ψl), UT

l Ul = Iml ,
p(x|l) = G(x|µl,UlΛlU

T
l + Ψl), (2)

where y is the ml-dimensional hidden factor, µl is the
d-dimensional mean, both Λl and Ψl are diagonal covari-
ance matrices, while loading matrix Ul is constrained on
the Stiefel manifold UT

l Ul = Iml
.

Furthermore, data smoothing based regularization [11,
13] combining parametric model with Parzen window
nonparametric model [1, 6] is adopted, i.e., ph(x) =
1
N

∑N
t=1 G(x|xt,Ξh). As Ξh → 0, ph(x) becomes the

empirical distribution. There have been some previous ef-
forts applying the data smoothing technique onto GMM
modeling [15], where the kernel bandwidth matrix usually
took the simplest form Ξh = h2Id, whose limitation is
the data smoothing effect has to be identical and orthog-
onal, thus unable to precisely model the distribution with
high correlation. In this paper, we consider a general form
where the kernel can take any symmetric positive definite
bandwidth matrix Ξh.

By the nature of BYY harmony learning, for LFA the
target is to maximize Hs(Θ,Ξh), the harmony function
with data smoothing, as shown in Fig. 1. After initial-
ization with large enough k = kinit, ml = ml,init for
l = 1, . . . , k, model selection is implemented automat-
ically during parameter learning, where the whole algo-
rithm, shortly named BYY-A [13], iterates by three steps
named Yang-Step, Ying-Step and Smoothing-Step, re-
spectively. The adaptive learning process is stopped when
there is no further improvement on harmony function and
the parameter estimation converges.
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Targeted harmony function Hs(Θ,Ξh):
Hs(Θ,Ξh) = Lh(Θ) + Z(Ξh), Z(Ξh) = − ln

∑N

t=1
ph(xt)

Lh(Θ) =
∑k

l=1

∫
ph(x)p(l|x)p(y|x, l) ln[αlp(y|l)p(x|y, l)]dxdy,

Initialization:
Select large enough kinit and minit and randomly initialize a kinit component LFA model
with minit local hidden dimensions for each component, where minit ≤ d.

Yang-Step:
After selecting a sample xt, for each component l = 1, . . . , k, calculate
et,l = xt − µl, ŷl(x) = arg maxy ln[p(x|y, l)p(y|l)] = Wl(x− µl), Wl = ΛlU

T
l Ml,

Ml = (UlΛlU
T
l + Ψl)

−1 = Ψ−1
l −Ψ−1

l Ul(Λ
−1
l + UT

l Ψ−1
l Ul)

−1UT
l Ψ−1

l ,

p(l|xt) =

{
1, if l = lt,
0, otherwise.

, lt = arg maxl ln[αlp(ŷl(xt)|l)p(xt|ŷl(xt), l)].

Ying-Step:

αnew
l =

{
αl+η0
1+η0

, if l = lt,
αl

1+η0
, otherwise. µnew

lt = µlt + η0et,lt , εt,l = et,l −Ulŷl(xt),

Λnew
lt = (1− η0)Λlt + η0diag[WltΞhW

T
lt + ŷlt(xt)ŷlt(xt)

T ],
Ψnew

lt = (1− η0)Ψlt + η0diag[(Id −UltWlt)Ξh(Id −UltWlt)
T + εt,lε

T
t,l].

Update Ult by gradient on the Stiefel manifold,
Unew

lt = Ult + η0(GUlt
−UltG

T
Ult

Ult),

GUlt
= Mltet,lt ŷlt(xt)

T + MltΞhW
T
lt .

Discard the l-th component if αl approaches 0.
Discard the j-th factor of the l-th component if the j-th element of Λl approaches 0.

Smoothing-Step:
Update the smoothing parameter Ξh as follows:

Ξnew
h = RnewT Rnew, Rnew = R− η0∆R,

∆R = (RT )−1 − αltR(UlΛltU
T
lt + Ψlt)

−1

Stop Condition:
If parameters estimation converges, i.e., no further improvement on the harmony function.

Figure 1: Algorithm sketch for BYY automatic LFA learning approach with data smoothing
based regularization (BYY-A).

4 Three-Level Voting Combination
To make classification without rejection allowed, w LFA
models are independently initialized and trained on train-
ing data of each class s (s = 1, . . . , S), and then decreas-
ingly ordered by the harmony function. Thereafter, one
stochastic classifier is formed by putting S selected LFA
models together, with one LFA randomly selected from one
speaker’s f first models (1 ≤ f ≤ w). After repeating
this selection procedure for C times, a stochastic classifier
set of size C are determined, namely a stochastic commit-
tee, as shown in Fig. 2. In our experiments, we set and fix
w = 5, f = 3, and C = 20.

For sequence classification like the speaker identification
task, we adopt and design three cascading combination lev-
els. In the first point, collecting one trained LFA model on
one speaker’s data, a classifier combination is formed. In
the second, different classifiers are grouped into a commit-
tee combination. Furthermore, results on all samples along
the sequence are combined. Importantly, although the se-
quential topology between the classifier’s and committee’s
combination is fixed, i.e. the former should be in advance
of the latter, different schedules for the sequence combi-
nation result in variant hybrid schemes and structures. In

the sequel, we describe and investigate three different se-
quential topologies and ten different voting combination
approaches, as shown in Fig. 3.

4.1 Classifier-Committee-Sequence Hybrid
To classify a sequence X = {xt}T

t=1, one usually used
scheme is voting by each sample xt along it, where the se-
quence combination is positioned at the last level. Since
the classifier is combined ahead of committee, this three-
level combination is a Classifier-Committee-Sequence hy-
brid. Under this sequential topology, we consider four vot-
ing combination methods caused by different operations.

In the first method, supposing in one classifier the s-th
(s = 1, . . . , S) class has one LFA model with ks compo-
nents, as a testing data xt comes, the likelihood p(xt|s, l)
is computed for each component l = 1, . . . , ks and s =
1, . . . , S. Then the κ largest valued components are listed
out to form a subset K, where the s-th class has Ks ⊆ K.
Then xt is classified to the class ŝ(xt) = arg maxs |Ks|,
where actually we just need to count the number of com-
ponents in each Ks. This idea can be regarded as an exten-
sion of the well-known kNN approach in the application
of LFA for a classification problem, namely kNN voting.
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Figure 2: Flowchart of the acquisition of stochastic classifier and committee. On each
class training data, w LFA models are trained, the first f of which ordered by harmony
function and colored pink form the candidate model set. One stochastic classifier is
obtained by randomly select one LFA model for each class from the set. Afterwards
a stochastic classifier set, a committee, is formed by collecting C classifiers.

Hybrid Cascading Combination Levels
Methods Level 1 Level 2 Level 3

classifier (kNN voting) committee (voting) sequence (voting)
1 ŝ(xt) = arg maxs |Ks| Each classifier votes ŝ(xt) Each xt votes s

classifier (kNN approximation) committee (voting) sequence (voting)
2 ŝ(xt) = arg maxs p̃(xt|s) Each classifier votes ŝ(xt), Each xt votes s

p̃(xt|s) =
∑

i∈Ks
α̃ip(xt|i) and take the maximum s

classifier (kNN approximation & Bayesian) committee (Bayesian voting) sequence (voting)
3 p̃(xt|s) =

∑
i∈Ks

α̃ip(xt|i) Each classifier votes p(s|xt), Each xt votes s

p(s|xt) = βsp̃(xt|s)∑S

i=1
βip̃(xt|i)

and take the maximum s

classifier (Bayesian) committee (Bayesian voting) sequence (voting)
4 p(s|xt) = βsp(xt|s)∑S

i=1
βip(xt|i)

Each classifier votes p(s|xt), Each xt votes s

p(xt|s) =
∑

i∈s
αip(xt|i) and take the maximum s

classifier (kNN voting) sequence (voting) committee (voting)
5 ŝ(xt) = arg maxs |Ks| ŝ(X) = arg maxs

∑T

t=1
δ[ŝ(xt)− s] Each classifier votes ŝ(X)

classifier (kNN approximation) sequence (product & Bayesian) committee (Bayesian voting)
6 p̃(xt|s) =

∑
i∈Ks

α̃ip(xt|i) + ε, p(X|s) =
∏T

t=1
p̃(xt|s) Each classifier votes p(s|X)

ε is a small positive value to avoid 0 p(s|X) = βsp(X|s)∑S

i=1
βip(X|i)

classifier (kNN approximation & Bayesian) sequence (Bayesian voting) committee (voting)
7 p̃(xt|s) =

∑
i∈Ks

α̃ip(xt|i) Each sample xt votes p(s|xt), Each classifier votes ŝ(X)

p(s|xt) = βsp̃(xt|s)∑S

i=1
βip̃(xt|i)

and take the maximum as ŝ(X)

classifier (Bayesian) sequence (Bayesian voting) committee (voting)
8 p(s|xt) = βsp(xt|s)∑S

i=1
βip(xt|i)

Each sample xt votes p(s|xt), Each classifier votes ŝ(X)

p(xt|s) =
∑

i∈s
αip(xt|i) and take the maximum as ŝ(X)

sequence (product) classifier (voting) committee (voting)
9 p(X|s) =

∏T

t=1
p(xt|s) ŝ(X) = arg maxs p(s|X) Each classifier votes s

p(xt|s) =
∑

i∈s
αip(xt|i) = arg maxs p(X|s)

sequence (product) classifier (Bayesian) committee (Bayesian voting)
10 p(X|s) =

∏T

t=1
p(xt|s) p(s|X) = βsp(X|s)∑S

i=1
βip(X|i)

Each classifier votes p(s|X)

p(xt|s) =
∑

i∈s
αip(xt|i)

Figure 3: Comparative explanation of different combination approaches.

In the second level, committee’s classification is voted by
each classifier’s selection on ŝ(xt). Finally, the whole se-
quence X’s classification is obtained by each xt’s voting

from the committee selection.

In the second method, instead of kNN voting as the
previous first level, more information is adopted from the
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selected subset K via approximation of the probability
p(xt|s), i.e., p̃(xt|s) =

∑
i∈Ks

α̃ip(xt|i), where α̃s is the
normalized prior in selected subset Ks for the s-th class,
with p̃(xt|s) = 0 if Ks = φ. Following this kNN approx-
imation, ŝ(xt) with the maximum value is selected, i.e.,
ŝ(xt) = arg maxs p̃(xt|s). Then the committee combines
each classifier’s ŝ(xt) via voting to classify xt, followed by
the same sequence voting combination as the first method.

In the third method, on the first level, besides the kNN
approximation, a Bayesian is conducted via p(s|xt) =
βsp̃(xt|s)/[

∑S
i=1 βip̃(xt|i)], where βs is the prior of the s-

th class, assumed either equally 1/S or proportional to that
class’s sample size. On the second level, each classifier
votes through classes with its obtained Bayesian weights
p(s|xt), then the committee classifies xt to the class with
the maximum score. The sequence combination level is the
same as the first method.

In the fourth method, the classifier level conducts
Bayesian without kNN-like approximation, i.e., p(s|xt) =
βsp(xt|s)/[

∑S
i=1 βip(xt|i)]. In the committee level, each

classifier votes with its p(s|xt) weights, and then the max-
imum selection is the committee’s classification result for
xt. Sequence combination is the same as the first method.

4.2 Classifier-Sequence-Committee Hybrid
This subsection focuses on another sequential topology,
Classifier-Sequence-Committee combination, where the
sequence combination is put between the classifier level
and committee level. In the fifth method, classifier’s
classification for sample xt is made by kNN voting as
ŝ(xt) = arg maxs |Ks|. Afterwards the sequence classi-
fication by current classifier is made by all samples voting,
i.e., ŝ(X) = arg maxs

∑T
t=1 δ(ŝ(xt) − s), where δ(•) is

the Kronecker delta function used for voting. Finally in the
committee level, all classifiers vote their selections of ŝ(X)
to assign the most preferred one as the final classification.

The sixth method realizes the classifier combination by
the kNN approximation similar to the third method as
p̃(xt|s) =

∑
i∈Ks

α̃ip(xt|i) + ε, where the ε is a small
positive value to avoid the potential multiplied zero result
in the second level. Then the sequence combination level
assumes each sample is conditional independent distributed
and thus p(X|s) =

∏T
t=1 p̃(xt|s). Afterwards, Bayesian

is conducted via p(s|X) = βsp(X|s)/[
∑S

i=1 βip(X|i)],
so as to obtain the Bayesian voting weight in the next
level. The final committee’s result is made by all classi-
fiers’ Bayesian voting.

The seventh method owns the same classifier level as
the third method, i.e., a kNN approximation and Bayesian
procedure. For the sequence combination, each sample xt

votes for each s with its Bayesian weights, and then the
maximum scored class is selected as the classification re-
sult by current classifier for the whole sequence X. Final
committee voting is implemented from each classifier’s se-
quence classification result ŝ(X).

The eighth method shares the same first level with the
fourth method, i.e. a Bayesian on p(s|xt). Then the se-
quence voting is performed by each sample with the ob-
tained Bayesian weights, so that a maximum scored class
is taken as ˆs(X) by current classifier. Final level on com-
mittee combination is the same as the seventh method.

4.3 Sequence-Classifier-Committee Hybrid
In this topology, the sequence combination is conducted
on each LFA model first, and then each LFA model is
combined in the classifier level, and finally the com-
mittee’s result is combined from each classifier’s, thus
a Sequence-Classifier-Committee structure. In the first
level of sequence combination for this topology, {xt}T

t=1

are assumed independently distributed, so that p(X|s) =∏T
t=1 p(xt|s). The variants in this topology come from the

following two levels. We do not adopt the kNN idea into
this sequential topology, because the sequence combination
is conducted in the first level, merging all samples’ infor-
mation together, while the kNN technique is more mean-
ingful for a single sample instead of a sample set.

In the ninth method, the second level of classifier com-
bination is to classify X to the class with the maximum
posterior probability, i.e. ŝ(X) = arg maxs p(s|X). In the
third level, the committee lets each classifier select through
classes and vote for one, resulting in a final decision.

For the tenth method, on the level of each classifier,
Bayesian weights are obtained for all classes by p(s|X) =
βsp(X|s)/[

∑S
i=1 βip(X|i)]. Finally the committee col-

lects all classifiers’ Bayesian weighted votes and makes se-
lection to the maximum scored one.

5 Application on KING Corpus
The proposed approaches are applied on the KING
database, a benchmark English speech corpus designed
especially for text-independent speaker identification. It
consists of wide-band (WB) and narrow-band (NB) sets,
where WB was collected with a high-quality microphone
in a quiet room, while NB by telephone handsets through
various long distance telephone channels. In each set, all
speakers are male and ten sessions for each speaker were
recorded. To save space, the data and preprocessing are the
same with and referred to [3] for detail.

For text-independent speaker identification problem, a
sequence of feature vectors is divided into overlapping seg-
ments of T frames, as suggested by Reynolds [8] as fol-
lows.

segment l

. . . ,
︷ ︸︸ ︷
xl,xl+1, . . . ,xl+T−1,xl+T , . . .

segment l + 1

. . . ,xl,
︷ ︸︸ ︷
xl+1, . . . ,xl+T−1,xl+T , . . .

For the l-th testing segment, its sequence classification
is implemented by the discussed approaches. The correct
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Hybrid Data Sets (Training Length)
Methods WB (70s) NB (70s)

1 90.8± 2.8 67.8± 6.3

2 91.9± 3.1 70.1± 4.8

3 93.8± 4.1 75.2± 5.5

4 92.6± 3.3 74.3± 4.2

5 91.0± 4.5 68.9± 7.6

6 91.3± 2.6 72.9± 8.1

7 92.8± 3.2 72.6± 6.4

8 92.6± 3.7 74.1± 6.3

9 91.7± 3.6 69.4± 5.7

10 92.1± 3.2 73.2± 4.6

GGMM* 92.3± 3.9 73.6± 6.8

Figure 4: Experimental results of correct
speaker identification rates on KING corpus
database. The length of testing segment is 8s.
(*): The result is taken from [3].

identification rate through all testing segments is obtained
as the result for one trial. Same as [3], our simulations
adopt multiple trials for obtaining the reliable performance,
where in each trial two sessions are randomly selected from
ten recoding sessions for training and the remaining eight
for testing. The training data from two sessions are of dura-
tion 70s, while the testing data segments are set with length
T = 8s. In total, ten trials have been performed and the
overall performance is reported in Fig. 4. Again, in our ex-
periments, we set and fix w = 5, f = 3, and C = 20,
to compose the stochastic committee. The GGMM’s re-
sults are directly collected from [3] for comparison, which
is claimed as the best approach among their considered.

From the results we can find that, those methods adopt-
ing kNN approximation and Bayesian voting generally pro-
duce comparably good or better results than the referred
GGMM [3], while others worse. Interestingly, the classifi-
cation rate variances by the voting approaches are mostly
less than GGMM.

6 Conclusion and Future Work

For the application of speaker identification, in this paper
we adopt one fast Local Factor Analysis (LFA) modeling
implementation approach named BYY-A, which makes au-
tomatic model selection during parameter learning. For the
sequence classification task, a series of three-level com-
bination structures are designed and analyzed to combine
trained LFA models, mainly using variant voting mech-
anisms. This three-level cascading combination can be
regarded as a pseudo-dimension-reduction from 4 dimen-
sions, including models, classifiers, classes and samples
along sequence, into 1 dimension, i.e. the classes. Based
on the considered KING corpus database, the experimental
results of correct identification rates show these LFA based
voting approaches’ advantage and potential in classifying

and modeling high dimensional sequence data.
Furthermore, the experimental results also indicate that,

in the post-processing, among these different combination
and voting mechanisms some outperform the others, leav-
ing mathematical stochastic analysis and comparison ex-
pected in future. Nevertheless, as indicated by the re-
sults, several results are better than the previously reported
GGMM’s result [3], which combines GMM models via a
trained Mixture of Experts (ME) gating network. Thus,
further investigation on comparing LFA based ME with
these voting approaches is being carried out, with results
expected later.
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