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Abstract— In the self-organizing map (SOM), the
best matching units (BMUs) affect neurons as a function
of distance and the learning parameter. Here we study
the effects in SOM when a new parameter in the learning
rule, the activation frequency, is included. This parame-
ter is based on the relative frequency by which each neu-
ron is included in each BMU’s neighborhood, so there is
an individual memory (synapse strength) of the activation
received from each neuron. The parameter leads to non-
radial influence areas for BMUs that modifies the map for-
mation dynamics, including the fact that the weight vector
for BMU may not be the closest one to the input stimulus
after weight adaptation. Two error measures are lower for
the maps trained with this model than those obtained with
SOM, as shown in experiments with six data sets.

1 Introduction
The self-organizing map (SOM) is presented as a model
for the self-organization of neural connections, which
is translated in the ability of the algorithm to produce
organization from disorder [5]. One of the main properties
of the SOM is its ability to preserve in the output map
the topographical relations present in input data [16],
This property is achieved through a transformation of
an incoming signal pattern of arbitrary dimension into a
low-dimensional discrete map and to adaptively transform
data in a topologically ordered fashion [16]. Each input
data is mapped to a BMU, which affects other neurons
accordingly to the learning equation:

wn(t + 1) = wn(t) + αn(t)hn(g, t)(xi − wn(t)) (1)

Where α(t) is the learning rate at time t and hn(g, t) is the
neighborhood function from BMU neuron g to neuron n
at time t. In general, the neighborhood function decreases
monotonically as a function of the distance from neuron g
to neuron n. This decreasing property has been stated to
be a necessary condition for convergence [7, 6]. The SOM
tries to preserve relationships of input data by starting with
a large neighborhood and reducing it during the course of
training [16]. Neighborhood and learning parameters are
reduced by an annealing scheme although the form they
take is not critical [16].

As pointed out in [29], SOM follows the idea of using a
deformable lattice to transform data similarities into spatial
relationships. The lattice is deformed by applying learning
equation (1) to the neurons in the network. Here, we pro-
pose an additional parameter for equation (1) that quanti-
fies the influence a BMU n has over the neurons in the net-
work as a function of the relative frequency with which n
includes them in its neighborhood. It also measures the in-
fluence each input vector m has on them as a function of the
number of times the BMU for m affects the neurons. This
frequency activation parameter allows non-radial neighbor-
hood and, as reported in the results, forms better maps, in
terms of two error measures.

Although several modifications have been proposed to
the SOM learning rule, they do not reflect, at least to our
knowledge, the frequency of activation from other neurons.
Some works incorporate non-radial influence from BMUs
to neighbors, as, for example, in [19] it is proposed the re-
cursive Fisherman’s rule and some hybrid rules that reflect
an attenuation of the adaptation as the distance from the
BMU to the affected neuron increases. In [12] the activ-
ity patterns are non-radial and determined by a mechanism
based on a cooperative information control.

One of the first works that incorporated the concept of
memory for each neuron was proposed in [4], in which
an activation memory is defined, in order to identify the
new active neuron, and a modification in the BMU selec-
tion mecanism is presented. Also, a SOM-related model
has been studied in the light of reaction-diffusion mecha-
nisms where the BMU perturbes the excitable media and
generates a symmetrical traveling wave [26]. Several mod-
els of the visual cortex have been proposed [23, 21, 1] in
which a dynamic Hebbian-like behavior is considered, but
there is a radial influence between neurons.

The activity patterns in the cortex are irregular and non-
radial [13, 3], that is, neurons in different regions become
active for a given stimulus, whereas SOM shows regular
activity, since the neighborhood function defines a sym-
metrical influence area, as well as the learning function,
although there are some variations that present a different
behavior.

There is biological evidence that connectivity in the
brain cortex is not regular and could be approximated by
a small-world topology [31, 30], which means that when
a given neuron or group of networks become active, they



activate neurons in their proximity as well as those located
farther. In [24] it is reported that low error measures are
achieved when the topology of the lattice resembles that of
a small-world network. So, in self-organizing maps over
small-world lattices, non-radial activity patterns which re-
semble that of the cortex are obtained. Also, in an prelim-
inary study of activation frequency, some non-radial pat-
terns are reported in [25]. In this work, we obtain non-
radial activity patterns not by an explicit modification in
the lattice topology, but by a modification in the learning
process.

As a model of the brain cortex, SOM has been applied in
the study of map formation in visual cortex [22, 2], as mod-
els of brain maps or as ordered projections from sensorial
areas to cortical regions [17]. However, the SOM fails to
reproduce the activity patterns mentioned above [18, 9], al-
though some models, as the presented in [20], in which a
modification in the SOM adaptation kernel is considered in
order to include surround inhibition, achieve the formation
of pinwheel patterns similar to those observed in the visual
cortex. In these models, however, influence from BMUs is
radial and symmetrical.

Here, we propose a modification in the learning equation
such that the activity patterns resemble in more detail those
non-radial patterns present in the cortex. This non sym-
metrical influence area formation is achieved through the
activation frequency parameter which is a kind of mem-
ory between neurons that resembles Hebbian learning. The
self-organizing capabilities of the SOM are not limited but
enhanced, as shown in section 3.

The proposed modification to the SOM is an additional
term in eq. (1) that quantifies the frequency by which a
neuron is affected by each BMU. We apply this modifica-
tion to the bubble neighborhood scheme, as in this scheme
it is straightforward to keep track of the number of times
each BMU affects others, by including them on its neigh-
borhood.

The variation we propose is the activation frequency, ex-
plained in section 2 whereas in section 3 several results are
presented. In section 4 the results are discussed and some
conclusions are stated.

2 The activation frequency in the
SOM (AFSOM)

In Hebbian learning, the strength of the synapsis between
two neurons is a function of the frequency by which both
of them are fired simultaneously for the same stimulus.
Here, we incorporate a Hebbian-like parameter to the SOM
learning rule. This parameter leads to the activation fre-
quency SOM, hereafter AFSOM, which allows non-radial
influence from BMUs to their neighbors while, at the same
time, the maps obtained by it show lower errors than those
obtained by SOM.

The activation frequency between neuron k and neuron

n is defined as a function of the number of times k has be-
come a BMU and included neuron n in its neighborhood
(and thus affected it), named T k

n , divided by the number of
times n has been affected by any BMU, Tn. Ωn(k) is de-
fined as T k

n/Tn and it represents the influence from neuron
k to neuron n.

The activation frequency function ρn(k) is a function of
Ωn(k). Eq. (2) shows the learning equation for the SOM
with the new parameter. It is defined in the range [0, 1]
so an unconstrained weight growth is avoided, which is a
main problem in the original Hebbian learning formulation
[8]. When there is no influence between BMU k and neu-
ron n, ρn(k) = 0. On the other hand, when the influence
from neuron k attains a maximum to neuron n, then ρn(k)
should be 1.

wn(t+1) = wn(t)+αn(t)hn(g, t)ρn(k)(xi−wn(t)) (2)

In order to study the behavior of the SOM imposed by
ρn(k), let H = {h1, h2, h3} be the set of BMUs that will
include n on its neighborhood, and thus, affect it. Suppose
that during the first epoch and for the first mapped vector
v1, h1 becomes the BMU. That is, n will be affected by
a factor ρn(h1) = f(1) as Ωn(h1) = 1. Suppose now
that h2 becomes the BMU for another vector, say v2. As n
is also in the neighborhood of h2, it will be affected by a
factor of ρn(h2) = f(0.5) because Ωn(h2) = 1/2, as n has
been included in any BMU’s neighborhood twice (Tn =
2). Now, suppose h3 becomes the BMU for v3. It will
affect n by ρn(v3) = f(1/3) as Ωn(h3) = 1/3. If h1

happens to be the next BMU, it will affect n with a strength
ρn(Ωn(h1)) = f(2/4), as n has been affected four times
(Tn = 4) and h1 has affected it two times (Th1

n = 2).
Those BMUs that include n in its neighborhood with a

high frequency will have a higher effect than the effect of a
BMU that includes n as its neighbor less frequently. So, as
long as the neighborhood is large enough as to include n,
the neurons in H will affect it as a function of Ωn(hi).

Given the case that, after neuron n has been affected for
T times a new BMU, say, hk enters H , it will affect n
with a very low intensity (f(1/T )), even if n is closer to
hk than to the previous BMUs in H . This modification
leads to a momentum effect, in which a neuron tends to be
influenced with high intensity by BMUs that have affected
it more often than those BMUs that affect it with a low
frequency. The more a BMU affects a neuron, the more that
neuron will tend to be linked to the BMU: ρn(k) establishes
the synaptic strength from neuron k to neuron n.

In the SOM, a neuron r (see fig. 1) may be affected
by BMUs i and j and its weight vector would be modified
with the same magnitude, as long as the neighborhood is
large enough as to include it on the influence area of both
BMUs even though the distance from i to r is greater than
the distance from j to r. This magnitude is independent
on the annealing scheme of α(t), as this annealing scheme
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is only a function of time and the previous learning factor
value, α(t− 1) [16].

Figure 1: The influence, shown here as a rotation in the
weight vector, of BMU i is higher on neuron q. Thick ar-
rows represent weight vector after modification.

In SOM during the same epoch both r and q are equally
affected by i, as they are located at the same distance from
it and the learning factor for i is the same. In AFSOM,
the influence from i to r is modified with respect to the
influence shown in the SOM because j has affected r. Even
when the neighborhood function decreases as to exclude r
from j’s neighborhood, the previous influence is recorded
in r’s memory (ρr(.)), so it will not be affected by i with
the same intensity as if r had not been affected by j. Also
i does not affect r and q with the same magnitude because
r has been under the influence of other BMUs (j), which
is enough to change the activation frequency by which r is
affected by i: no matter if j does not affect r any longer,
the activation frequency from i to r has taken that influence
into account.

As Ωn(k) depends on the number of times k include n
on its influence area, ρn(k) depends on the neighborhood
function and thus it would be decreasing with time, since
the neighborhood is also decreasing with respect to time.
Therefore the annealing scheme for ρn(k) is straightfor-
ward as long as it is positive definite.

The form of ρn(k) is critical: it should be a positive defi-
nite function on Ωn(k), but that is not enough. Empirically,
we have found that those functions whose image is in the
range [0.5, 1.0] not only show lower errors, but also form
activity areas which are not symmetrical.

A naive choice for activation frequency function would
be ρn(k) = Ωn(k). This function forms maps whose er-
rors are similar to the maps formed by the SOM, but at the
same time, it shares the same properties that other activa-
tion frequency functions with lower errors. As the number
of epochs go by, the area affected by ρn(k) is reduced, as
the neighborhood function is decreasing, but the intensity
over the neurons being affected by k is higher. However,
this intensity is not radial as some of the neurons affected
by k could be affected by other neurons.

In the AFSOM every neuron has a temporal memory,
Ωn(k), which allows it to recall the number of times any
other neuron has affected it. This memory could be stated
as the synaptic strength between every pair of neurons. If

a given BMU persistently affects a neuron, and no other
BMU affects it, then its synaptic strength is higher than the
synaptic strength between another neuron and the two or
more BMUs that affect it.

Several activation frequency functions were studied in
order to identify the general properties that allow: 1) low
error measures, 2) low sensitivity to initial conditions and
3) non radial influence areas for BMU.

From all the possible functions for ρn(k), only a few
of them show error measures lower than the SOM and
achieved those low errors through non-radial influence ar-
eas. Rule 1, despite of its simplicity, shows error measures
similar to the maps trained by SOM with bubble neighbor-
hood, whereas the remaining three rules perform better.

(Rule 1) ρn(k) = Ωn(k) (3)

(Rule 2) ρn(k) =
1

1 + e−2.5×Ωn(k)
(4)

(Rule 3) ρn(k) = 0.5× Ωn(k) + 1 (5)

(Rule 4) ρn(k) =
1

1 + e−0.5×Ωn(k)
(6)

The range of rules 2-4 is [0.5, 1] while the range for rule
1 is [0, 1]. In several experiments with dozens of different
activation frequency functions, those with low errors and
non-radial influence were those whose range is [0.5, 1] and
are positive definite over Ωn(k). This means that the influ-
ence from a BMU to neurons on its neighborhood should
not be very low in any case, even if it is affecting them for
the first time.

In SOM, the neighborhood function defines an influence
area of the BMU. It defines a kind of neuronal activity
spread effect [17, 27]. The intensity in the influence area
is homogeneous, while in AFSOM, those influence areas
are neither radial nor symmetrical and, at the same time,
the formed maps are as good (and in many cases better)
as those formed by SOM with bubble neighborhood, in the
sense of low error measures.

If ρn(.) < 1 then neuron n will not modify its weight
as much as stated by αn(.) and by |wn − x|. The lower
ρn(.) the lower the modification of n’s weight vector in
direction of the input vector. That is, n’s weight vector
will not be attracted to the input vector as much as if this
influence were maximal (ρn(.) = 1). Thus n is more likely
to be linked to (affected by) a BMU k if there is a long-time
effect (a high value of ρn(k)), rather than linked to a BMU
j that has a recent influence over it (see fig. 2).

In the SOM, the BMU updates its weight vector so it is
the closest one to the input vector that stimulated the BMU.
Although some other neurons may update its weight vector
as much as the BMU, no one can be more similar to the
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Figure 2: Weight vector modification after two input vec-
tors are mapped to BMUs for SOM and for AFSOM for
α = 1 (left) and α = 0.5 (right). It is observed that for
BMU 2 the weight vectors follow a different route in AF-
SOM for the three central neurons, as they are under the
influence of two BMUs. The neighborhood for each BMU
is indicated as a solid line.

Figure 3: a) Distance from weight vector to input vector (y
axis) and distance from the BMU to its neighbors (x axis).
The BMU’s weight vector (BMU at distance 0) is not the
closet to the input vector after applying eq (2). The arrows
show the BMU. b) The z axis is the Euclidean distance
from each neuron’s weight vector to input vector.

input vector than BMU’s because of eq. (1). In contrast,
in AFSOM, the BMU’s weight vector may not necessarily
become the most similar one to the input vector (see fig 3).
That is, other neurons may update their weight vector and
become more active that the BMU, in the sense of simili-
tude to the input vector.

Let k be the BMU for a certain input vector m and neu-
ron i to be in its neighborhood. It is possible that the weight
vector for i gets closer to m than k’s weight vector. To see
this, lets consider the adaptation process that takes place
after input m is mapped to k: wk = wk + ρk(k)(m−wk).
Also, neuron i is updated: wi = wi + ρi(k)(m− wk) (the
time t has been eliminated for clarity and α and h are not
indicated as both have the same value for i and k in the
bubble neighborhood scheme). If it happens that:

• ρk(k) + δ < ρi(k) as, for example, if neuron i has
not been affected by any other neuron different from
k whereas k has been influenced by other neurons, and

Figure 4: Influence areas for a BMU (white x) for rule 1
for four consecutive epochs. The intensity of the influence
from the BMU to its neighbors is not radial or symmetrical.
As the number of epochs and mapped vectors increases, the
intensity of the influence increases. In a-d (starting at top
left), four different input vectors were mapped to the BMU
in the same epoch. It is observed a bias in the intensity. The
color scale is proportional to ρn(k).

• |wk−m| < |wi−m|+δ which means that weight vec-
tor for neuron i is not ”very far away” from m input
vector

then weight vector i gets closer to m than weight vector k
as ρk(k)|wk −m| < ρi(k)|wi −m|.

The activity patterns formed by ρn(k) show interesting
properties. For example, neurons that are very close to
BMU k are not affected as much as some neurons that are
located far away from k, as it may be observed in figs. 4c)-
e), where close neurons are blue-colored, while farther neu-
rons are red-colored, which means that ρn(k) is higher for
the later neurons. This is explained by the fact that the blue-
colored neurons are being affected with a high frequency
by other BMU’s different from k, while the red-colored
are being affected with a low frequency (if any) by other
BMUs.

The training of the map in the AFSOM is affected by
ρn(k). Fig 5 shows the weight folding for SOM and for the
proposed modifications for an artificial data set. It is ob-
served that the AFSOM leads to a faster folding than SOM.

3 Results
We evaluated the AFSOM for six data sets: the two-
dimensional spiral (350 vectors), the iris data set, the iono-
sphere data set, the codon usage data set (64-dimensional
and 400 input vectors), the waveform data set and the Mexi-
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Figure 5: Weight folding for epochs t = 1, 3, 6, 10, 12, 20
and 30 for SOM (first row) and for the AFSOM (equations
(3)-(6), rows 2 - 4) obtained in a 20 × 20 lattice. The data
set is an unitary circumference with 1000 input vectors.

can elections (ME) data set, (six-dimensional and 300 input
vectors).

In order to verify low-error maps formed by eq. (2)
two error measures were quantified and compared to the
error measures present in the maps formed by eq (1). Al-
though there are several error measures for the maps ob-
tained by the SOM algorithm, [10, 15, 14], the topographic
error (TE) as well as the error quantization (EQ) were the
used error measures for the obtained maps, as they are
good measures of the quality of topographic mapping and
vector quantization. In order to test sensitivity and self-
organization, several thousands of experiments were made
for three different lattices size, N×N (N = 10, 20 and 25),
as well as for the initial learning parameter 0 < α(0) ≤ 1
and for the initial neighborhood size 1 < hn(g, 0) ≤ N .
Practically, for each

• learning set (spiral, iris, ionosphere, ME data, codon
usage and waveform),

• number of epochs (between 1 and 30),
• activation frequency function (equation (1) was also

included for comparison),

the initial learning parameter α(0) was chosen randomly
from (0, 1] as well as the initial neighborhood width was
chosen from [1, N ]. The final learning parameter was
0.00001. The final neighborhood values were set to 0 and
decreased exponentially.

Figures 6 - 7 show TE and EQ as a function of the num-
ber of epochs and initial neighborhood width for the SOM
and for AFSOM for the six data sets for the 20x20 lattice.
Rules 1 and 3 show similar error measures for the six data
sets. Both of them show low TE values if both, the num-
ber of epochs and initial neighborhood width are low. SOM

Figure 6: TE as a function of number of epochs and ini-
tial neighborhood width for the six data sets (from top to
bottom spiral, iris, Mexican elections, ionosphere, codon
usage and waveform) for SOM (first column) and AFSOM
(rules 1 - 4, columns 2 - 5).

shows high TE values in the former situation. Rule 1 shows
very low TE for the waveform data set if compared to any
other rule, including SOM.

Rules 2 and 4 show also similar TE curves. For the iris
data set, both rules show high TE values in an unexpected
case, when the number of epochs and the initial neighbor-
hood width are maximal, which contrasts with the behavior
shown by SOM and rules 1 and 3. For EQ, rules 1 and 3
show lower values than SOM, with exception of the ME
data set, for which rule 3 shows high values. EQ seems
harder to be decreased in the AFSOM for all data sets.

Tables (1)-(3) show a summary of the TE and EQ for the
analyzed data sets. It is shown that the topographic error
is, in general, lower in the maps obtained by eq (2) than in
those maps obtained by eq (1). Consistently, rule 3 forms
maps with lower TE and EQ values than those formed by
the remaining rules as well as those formed by SOM.

4 Conclusions

A parameter that accounts for the activation frequency be-
tween BMUs and its neighbors is incorporated to the SOM.
In it, each neuron has a memory of the synaptic strength it
has with each other neuron in the network. The activation
frequency resembles Hebbian learning, as it is a function
of the frequency by which neurons respond for the same
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Figure 7: EQ as a function of number of epochs and ini-
tial neighborhood width for the six data sets for SOM (first
column) and AFSOM (rules 1 - 4, columns 2 - 5).

stimulus, achieved by a differentiated influence of BMU to
its neighbors.

The weight folding in the proposed model is subject to
the differentiated influence each BMU k has in its neigh-
bors. The weight vector for those neurons with which k
has a strong synaptic strength will be strongly attracted to
the input vector for which k became BMU. This behavior
allows a faster weight folding and also allows the weight
vector from other neurons to get closer to the input stimu-
lus than the BMU’s weight vector.

The fact that the BMU’s weight vector may not be the
closest to the input stimulus is also remarkable. As it may
happen that a BMU affects with high intensity neurons that
are far away and affect with lower intensity neurons closer
to it, it may explain the brain cortex images obtained by
neuroimaging techniques in an alternative way. Research
has been done to verify the compartmental structure of the
brain and it has been proposed that connectivity in the brain
may have a strong genetic nature [13, 28].

However, with the proposed model, it may be possible to
explain those images in a different way. Here, the neurons
that are active for a particular stimulus may not be the most
excited ones, if excitation is equivalent to distance from
weight vector to input vector after adaptation. So, if a given
neuron responds to a stimulus, it may not even be very ex-
citated, because of the frequency activation function, but
may be able to stimulate neurons located far away, and in
a non-radial pattern. Following this idea, the neurons iden-
tified as stimulated may not necesarily be the most excited

ones for that stimulus.

Although the error measures are in general lower in AF-
SOM than in SOM, this is not its main feature. The fact
that it achieves self-organization by a non-radial influence
of neurons is more important, because it resembles more
accurately the brain cortex dynamics by generating non-
symmetrical activity patterns and also because it incorpo-
rates memory between every pair of neurons.

Table 1: Mean (µ) and standard deviation (σ) for 20 000
experiments with random initial neighborhood width (1 <
h < 20), random inital α and random number of epochs
(0 < r < 31), for the spiral and iris data sets, for 20x20
lattice. h(r) = 0 and α(r) = 0.00001.

Spiral
R. µTE σTE µEQ σEQ
SOM 0.50 0.001 0.010 0.01
1 0.50 0.000 0.011 0.01
2 0.49 0.001 0.009 0.01
3 0.49 0.002 0.010 0.02
4 0.49 0.001 0.010 0.01

Iris
R. µTE σTE µEQ σEQ
SOM 0.41 0.001 0.092 0.000
1 0.42 0.001 0.091 0.000
2 0.41 0.001 0.092 0.001
3 0.40 0.001 0.091 0.001
4 0.40 0.001 0.092 0.000

Table 2: µ and σ for 20 000 experiments with random ini-
tial neighborhood width and random inital α for the Mexi-
can elections and ionosphere data sets, for 20x20 lattice.

Elections
R. µTE σTE µEQ σEQ
SOM 0.36 0.001 0.049 0.002
1 0.36 0.008 0.051 0.001
2 0.35 0.009 0.049 0.003
3 0.34 0.006 0.049 0.002
4 0.36 0.001 0.048 0.003

Ionosphere
R. µTE σTE µEQ σEQ
SOM 0.42 0.003 5.347 0.007
1 0.41 0.001 5.785 0.005
2 0.41 0.002 5.329 0.007
3 0.38 0.001 5.348 0.008
4 0.41 0.001 5.667 0.010
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Table 3: µ and σ for 20 000 experiments with random ini-
tial neighborhood width and random α for the codon and
waveform data sets, for 20x20 lattice.

codon
R. µTE σTE µEQ σEQ
SOM 0.35 0.003 2.307 0.024
1 0.37 0.005 2.408 0.032
2 0.38 0.004 2.394 0.081
3 0.33 0.001 2.306 0.028
4 0.37 0.007 2.537 0.091

waveform
R. µTE σTE µEQ σEQ
SOM 0.73 0.001 1.441 0.002
1 0.52 0.004 1.501 0.000
2 0.63 0.001 1.447 0.001
3 0.68 0.001 1.432 0.001
4 0.70 0.001 1.442 0.002
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