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Abstract— Recently, batch optimization schemes of
the self-organizing map (SOM) and neural gas (NG) have
been modified to so-called median variants which allow a
transfer of these methods to arbitrary distance measures be-
yond the standard euclidean metric. This principle is par-
ticularly suitable for complex applications where data are
compared by means of problem-specific, possibly discrete
metrics such as protein sequences which are compared by
FASTA or BLAST. However, median variants do not allow
a continuous update of prototype locations and their capac-
ity is thus restricted in particular for small data sets. In
this contribution, we consider the relational dual of batch
optimization which can be formulated in terms of pairwise
distances only such that an application to distance matri-
ces without known euclidean embedding becomes possi-
ble. For SOM, a direct visualization of data is given by
means of the underlying (euclidean or hyperbolic) lattice
structure. For NG, pairwise distances of prototypes can
be computed based on a given data matrix only, such that
subsequent mapping by means of multidimensional scaling
can be applied. These algorithms are evaluated in several
experiments.

1 Introduction
The self organizing map as proposed by Kohonen [17] con-
stitutes one of the most popular methods for visual data
inspection and clustering: It is highly flexible and can be
easily applied to data of interest. Alternative methods ex-
ists such as neural gas as presented by Martinetz [20] which
focuses on the aspect of clustering and which can serve as
inspection tool in combination with subsequent visualiza-
tion e.g. using multidimensional scaling [16, 27].

The original online variants of SOM and NG, however,
have only been proposed for euclidean data. Extensions to
more general situations are inevitable if the euclidean dis-
tance measure is not appropriate or not applicable such as
the case of discrete data. A variety of extensions of SOM
has been proposed to deal with this situation including sta-
tistical variants [28], variants which built on generative
models [30], and encoder-decoder frameworks [4, 5, 26].
These proposals have in common that the original intuitive
version of SOM is not directly obtained in the case of stan-
dard euclidean data but modifications are necessary. Re-
cently, batch optimization schemes have been extended to
general proximity data by means of the generalized median
[3, 18]. This restricts prototype locations to data points,

thereby maintaining the standard batch optimization prin-
ciple as far as possible. A theoretical background for this
method as well as a convergence proof is provided in [3]:
median variants can be interpreted as consecutive optimiza-
tion of the cost function of NG resp. SOM with respect to
assignments and prototype locations. Thus, median cluster-
ing is very similar to standard batch variants since it relies
on the same cost function. However, it restricts prototype
locations to the data space such that a severe loss of accu-
racy can be expected in particular for an only sparsely cov-
ered input space since no continuous update takes place.

Here we propose relational variants of SOM and NG
which allow a continuous update of prototypes also in the
case of given distance matrix. These versions optimize the
same cost function as the standard batch versions, such that
convergence is guaranteed. Relational clustering is quite
well known for simple k-means clustering and fuzzy vari-
ants thereof [9, 10]. The article [12], for example, provides
a reliable (but costly) solution to optimize the cost function
of Relational k-means by means of statistical physics. For
SOM and NG, online kernelized variants have been pro-
posed e.g. in [23, 32] which are related to relational clus-
tering since every kernel induces a general metric (but not
vice versa). However, these proposals do not provide a fast
batch optimization scheme and they require similarities in-
stead of dissimilarities. We embed relational clustering into
a general framework by means of a cost function such that
convergence is guaranteed and extensions such as supervi-
sion [8] can be easily integrated.

The focus of this article lies on the usefulness of these
methods for inspection and low-dimensional visualization
of relational data characterized by pairwise distances. For
this purpose, standard SOM with either euclidean or hy-
perbolic lattice as proposed in [24] can be used. Alter-
natively, we derive formulas which describe pairwise dis-
tances of prototypes in the relational models, such that
also NG structures without fixed prior lattice can be em-
bedded in low dimensional euclidean or hyperbolic space
[16, 27, 31]. Thereby, depending on the complexity of the
data, hyperbolic space might be better suited to cluster and
visualize hierarchical structures and close connections of
the data [1].

Now, we first introduce standard batch optimization of
NG and SOM and extend this models to relational data.
We discuss the possibility to incorporate supervision and
visualization, and demonstrate the applicability in several
experiments from bioinformatics.



2 Relational topographic maps
Classical neural topographic maps consider vectorial data
~x ∈ R

n which are distributed according to an underlying
distribution P in the euclidean plane. The goal of clus-
tering is to distribute prototypes ~wi ∈ R

n, i = 1, . . . , N
faithfully among the data. A new data point ~x is assigned
to the winner ~wI(~x) which is the prototype with smallest
distance ‖~wI(~x)−~x‖2. This clusters the data space into the
receptive fields of the prototypes.

Different popular variants of neural clustering have been
proposed to learn prototype locations from given training
data [17]. Assume the number of prototypes is fixed to N .
Neural gas (NG) [20] has been introduced based on the cost
function

ENG(~w) =
1

2C(λ)

N
∑

i=1

∫

hλ(ki(~x)) · ‖~x − ~wi‖2 P (d~x)

where

ki(~x) = |{~wj | ‖~x − ~wj‖2 < ‖~x − ~wi‖2}|

is the rank of the prototypes sorted according to the dis-
tances, hλ(t) = exp(−t/λ) scales the neighborhood co-
operation with neighborhood range λ > 0, and C(λ) is
the constant

∑N
i=1 hλ(ki(~x))which we neglect in the fol-

lowing for simplicity. Classical NG is optimized online by
means of a stochastic gradient descent. For a fixed training
set, an alternative fast batch optimization scheme is offered
by the following algorithm, which in turn computes ranks,
which are treated as hidden variables of the cost function,
and optimum prototype locations [3]:

init ~wi

repeat
compute ranks ki(~x

j) =
|{~wk | ‖~xj − ~wk‖2 < ‖~xj − ~wi‖2}|

compute new prototype locations ~wi =
∑

j hλ(ki(~x
j)) · ~xj/

∑

j hλ(ki(~x
j))

Like k-means, NG can be used as a preprocessing step for
data mining and visualization, followed e.g. by subsequent
projection methods such as multidimensional scaling.

The self-organizing map (SOM) as proposed by Koho-
nen uses a fixed (usually low-dimensional and regular) lat-
tice structure which determines the neighborhood cooper-
ation. This restriction can induce topological mismatches
if the data topology does not match the prior lattice. How-
ever, since often a two-dimensional regular lattice is cho-
sen, this has the benefit that, apart from clustering, a direct
visualization of the data results by a representation of the
data in the regular lattice space. Thus SOM constitutes a
direct data inspection and visualization method. SOM it-
self does not possess a cost function, but a slight variation
thereof does, as proposed by Heskes [11]. The cost func-
tion is ESOM(~w) =

1

2

N
∑

i=1

∫

δi,I∗(~x) ·
∑

k

hλ(n(i, k))‖~x − ~wk‖2 P (d~x)

where n(i, j) denotes the neighborhood structure induced
by the lattice and hλ(t) = exp(−t/λ) scales the neigh-
borhood degree by a Gaussian function. Thereby, the in-
dex I∗(~x) refers to a slightly altered winner notation: the
neuron I∗(~x) becomes winner for ~x for which the average
distance

∑

k

hλ(n(I∗(~x), k))‖~x − ~wk‖2

is minimum. Often, neurons are arranged in a graph struc-
ture which defines the topology, e.g. a rectangular or hexag-
onal tessellation of the euclidean plane resp. a hyperbolic
grid on the two-dimensional hyperbolic plane, the latter al-
lowing a very dense connection of prototypes with expo-
nentially increasing number of neighbors. In these cases,
the function n(i, j) denotes the length of a path connecting
the prototypes number i and j in the lattice structure. Orig-
inal SOM is optimized in an online fashion. For fixed train-
ing data, batch optimization is possible by subsequently op-
timizing assignments and prototype locations:

init
repeat

compute winner assignments I∗(~xj) minimizing
∑

k hλ(n(I∗(~xj), k))‖~x − ~wk‖2

compute new prototypes ~wi =
∑

j hλ(n(I∗(~xj), i) · ~xj/
∑

j hλ(n(I∗(~xj), i)

It has been shown in e.g. [3] that these batch optimiza-
tion schemes converge in a finite number of steps towards
a (local) optimum of the cost function, provided the data
points are not located at borders of receptive fields of the
final prototype locations. In the latter case, convergence
can still be guaranteed but the final solution can lie at the
border of basins of attraction.

2.1 Relational data
Relational data xi are not embedded in a vector space,
rather, pairwise similarities or dissimilarities are available.
Assume training data x1, . . . , xm are given by means of
pairwise distances dij = d(xi, xj)2. We assume that this
stems from an unknown distance measure such that we can
find (possibly high dimensional) euclidean points ~xi such
that dij = ‖~xi − ~xj‖2. Note that this notation includes a
possibly nonlinear mapping (feature map) xi 7→ ~xi corre-
sponding to the embedding in a euclidean space. However,
this embedding is not known, such that we cannot directly
optimize the above cost functions in the embedding space.

Median clustering restricts prototype locations to given
data points and determines the prototype locations in each
iterative step in such a way that the corresponding part
of the cost function (assumed fixed assignments) becomes
minimum. These values are determined by extensive
search, turning the linear complexity to a quadratic one
w.r.t. the number of training data. This procedure has the
severe drawback that only discrete adaptation steps can be
performed and the result is usually worse compared to stan-
dard SOM or NG in the euclidean setting.

Relational learning overcomes this problem. The key ob-
servation consists in the fact that optimum prototype loca-
tions ~wj can be expressed as linear combination of data
points. Therefore, the unknown distances ‖~xj − ~wi‖2 can
be expressed in terms of known values dij .
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More precisely, assume there exist points ~xj such that
dij = ‖~xi−~xj‖2. Assume the prototypes can be expressed
in terms of data points ~wi =

∑

j αij~x
j where

∑

j αij = 1.
Then

‖~wi − ~xj‖2 = (D · αi)j − 1/2 · αt
i · D · αi

where D = (dij)ij constitutes the distance matrix and
αi = (αij)j the coefficients.

Because of this fact, we can substitute all terms ‖~xj −
~wi‖2 in batch optimization schemes. For optimum solu-
tions we find the equality ~wi =

∑

j αij~x
j for batch NG

and batch SOM as introduced above, whereby

(1) αij = hλ(ki(~x
j))/

∑

j hλ(ki(~x
j)) for NG, and

(2) αij = hλ(n(I∗(~xj), i))/
∑

j hλ(n(I∗(~xj), i) for
SOM.

This allows to reformulate the batch optimization schemes
in terms of relational data. We obtain the algorithm

init αij with
∑

j αij = 1
repeat

compute ‖~xj − ~wi‖2 as (D · αi)j − 1/2 · αt
i · D · αi

compute optimum assignments based on these values
α̃ij = hλ(ki(~x

j)) (for NG)
α̃ij = hλ(n(I∗(~xj), i)) (for SOM)

compute αij = α̃ij/
∑

j α̃ij

Hence, prototype locations are computed only indirectly by
means of the coefficients αij . Initialization can be done e.g.
setting initial prototype locations to random data points,
which is realized by a random selection of N rows from
the given distance matrix.

Given a new data point x which can isometrically be
embedded in euclidean space as ~x, and pairwise distances
dj = d(x, xj )2 corresponding to the distance from xj , the
winner can be determined by using the equality

‖~x − ~wi‖2 = (D(x)t · αi) − 1/2 · αt
i · D · αi

where D(x) denotes the vector of distances D(x) =
(dj)j = (d(x, xj)2)j .

The quantization error can be expressed in terms of the
given values dij by substituting ‖~xj − ~wi‖2 by (D ·αi)j −
1/2 · αt

i · D · αi. Interestingly, using the formula for opti-
mum assignments of batch optimization, one can also de-
rive relational dual cost functions for the algorithms. The
relational dual of NG is

∑

i

∑

ll′ hλ(ki(~x
l))hλ(ki(~x

l′))dll′

4
∑

l hλ(ki(~xl))
.

For SOM, we obtain

∑

i

∑

ll′ hλ(n(I∗(~xl), i))hλ(n(I∗(~xl′ ), i))dll′

4
∑

l hλn(I∗(~xl), i)
.

Note that this relational learning gives exactly the same re-
sults as standard batch optimization provided the given re-
lations stem from a euclidean metric. Hence convergence is
guaranteed in this case since it holds for the standard batch

versions. If the given distance matrix does not come from a
euclidean metric, this equality does no longer hold and the
terms (D · αi)j − 1/2 · αt

i · D · αi can become negative.
In this case, one can correct the distance matrix by the γ-
spread transform Dγ = D + γ(1− I) for sufficiently large
γ where 1 equals 1 for each entry and I is the identity. Al-
ternatively, one can directly apply the optimization scheme
since it converges also for general symmetric and nonsin-
gular matrix D towards a value of the dual cost function as
shown in [7] for relational NG.

2.2 Supervision
The possibility to include further information, if available,
is very important to get meaningful results for unsupervised
learning. This can help to prevent the ‘garbage in - garbage
out’ problem of unsupervised learning, as discussed e.g. in
[14, 15]. We assume that additional label information is
available which should be accounted for. Thereby, labels
are embedded in R

d. We assume that the label attached
to xj is denoted by ~yj . We equip a prototype wi with a
label ~Y i ∈ R

d which is adapted during learning. For the
euclidean case, the basic idea consists in a substitution of
the standard euclidean distance ‖~xj − ~wi‖2 by a mixture

(1 − β) · ‖~xj − ~wi‖2 + β · ‖~yj − ~Y i‖2

which takes the similarity of labels into account. β ∈ [0, 1]
controls the influence of the labels. This procedure has
been proposed in [8] for euclidean clustering. One can use
the same principles for relational clustering.

For discrete euclidean settings ~x1, . . . , ~xm cost functions
and related batch optimization is as follows: ENG(~w, ~Y ) =

∑

ij

hλ(ki(~x
j))·
(

(1 − β) · ‖~xj − ~wi‖2 + β · ‖~yj − ~Y i‖2
)

where ki(~x
j) denotes the rank of neuron i measured ac-

cording to the distances (1−β)·‖~xj− ~wi‖2+β ·‖~yj−~Y i‖2.
This change in the computation of the rank is accompanied
by the adaptation ~Y i =

∑

j hλ(~xj)~yj/
∑

j hλ(~xj) for the
prototype labels for batch optimization In the same way,
the cost function of SOM becomes

ESOM(~w, ~Y ) = δi,I∗(~xj)

∑

k hλ(n(i, k))
(

(1 − β) · ‖~xj − ~wk‖2 + β · ‖~yj − ~Y k‖2
)

where I∗(~xj) denotes the generalization of the winner no-
tation proposed by Heskes to the supervised setting, i.e.
it minimizes

∑

k hλ(n(I∗~xj), k))
(

(1 − β) · ‖~xj − ~wk‖2

+ β · ‖~yj − ~Y k‖2
)

. Batch optimization uses this winner

and extends the updates by ~Y i =
∑

j hλ(n(i, I∗(~xj))~yj/
∑

j hλ(n(i, I∗(~xj)). It has been shown in [8] that these
procedures converge in a finite number of steps.

Relational learning becomes possible by substituting the
distances ‖~xj − ~wi‖2 using the identity ~wi =

∑

αij~x
j

for optimum assignments which still holds for these exten-
sions. The same computation as beforehand yields to the
algorithm for dissimilarity data:
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Class 2 (HB)
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Class 4 (GG/GP)

Class 5 (Others)

Figure 1: Mapping of the non-euclidean Protein dataset by
a Relational SOM with hyperbolic grid structure.

init αij with
∑

j αij = 1
repeat

compute the distances as (1 − β) ·

((D · αi)j − 1/2 · αt
iDαi) + β · ‖~Y i − ~yj‖2

compute assignments α̃ij based on these values
compute αij = α̃ij/

∑

j α̃ij

compute prototype labels ~Y i =
∑

j αij~y
j

Since this version is identical to the euclidean version for
an euclidean distance matrix this procedure converges in
a finite number of steps. Note that, for vanishing neigh-
borhood size, the final prototype labels coincide with the
averaged label taken over the receptive field of a prototype.
For rapid learning, one can improve the classification re-
sult by setting the prototype labels to the averaged label of
the receptive fields after training. Note that, still, the proto-
type locations are affected by the label information, unlike
a pure unsupervised learning with posterior labeling. For
the supervised setting, the prototypes are forced to follow
the borders given by the class information.

2.3 Visualization
As discussed before, data can be clustered using trained
prototypes. But it is not obvious whether we are able to
create a visualization of such extracted information. For
low-dimensional euclidean SOM, a direct visualization is
given by an embedding of the data points to the respective
positions of their winner in the lattice space. Also the hy-
perbolic SOM allows an embedding of the points by means
of the Poincaré disk model [1] which embeds the hyper-
bolic space non-isometrically into the unit disk such that
the focus of attention is put onto the point which is mapped
into the center of the disk and an overall fish-eye effect re-
sults. Moving this focus allows to browse through the map.

For NG no direct visualization is given, but it can be
easily reached by a subsequent embedding of the proto-
types into the two-dimensional euclidean plane by means

 

 

Class 1 (HA)

Class 2 (HB)

Class 3 (MY)

Class 4 (GG/GP)

Class 5 (Others)

Figure 2: Mapping of the non-euclidean Protein dataset by
Relational BNG with non-metric multidimensional scaling.

of distance preserving projection techniques of the proto-
types such as multidimensional scaling. Given pairwise
distances δij := ‖~wi − ~wj‖ of the prototypes (possibly
nonlinearly preprocessed, i.e. δij = f(‖~wi − ~wj‖) where
f is an appropriate weighting function), this model finds
two-dimensional projections p(~wi) with pairwise distances
∆ij := ‖p(~wi) − p(~wj)‖ such that the stress-function

(

∑

i<j(δij − ∆ij)
2

∑

i<j ∆2
ij

)2

or a similar objective function is minimized.
To apply these techniques, the pairwise distance of pro-

totypes needs to be computed. As beforehand, we assume
the identity ~wi =

∑

l αil~x
l for optimum prototypes ~wi. We

assume that pairwise distances dij = ‖~xi −~xj‖2 are given,
accumulated in a matrix D as beforehand. Then we find

‖~wi − ~wj‖2 = αt
jDαi −

1

2
αt

jDαj −
1

2
αt

iDαi

where αi denotes the vector (αil)l.

3 Experiments
Protein Classification
The evolutionary distance of 226 globin proteins is deter-
mined by alignment as described in [21]. These samples
originate from different protein families: hemoglobin-α,
hemoglobin-β, myoglobin, etc. Here, we distinguish five
classes as proposed in [6]: HA, HB, MY, GG/GP, and oth-
ers. Table 1 shows the class distribution of the dataset.

For training we use 29 neurons for Relational Batch NG
and Relational Hyperbolic SOM, and a 5x5 grid for stan-
dard Relational SOM, respectively. The number of neurons
is derived from the hyperbolic grid of depth three (cf. figure
1). The neighborhood range is annealed starting from N/2
to 0, N being the number of neurons, in all experiments.
The results reported in Table 2 are gained from repeated
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Class No. Count Percentage
HA 72 31.86%
HB 72 31.86%
MY 39 17.26%
GG/GP 30 13.27%
Others 13 5.75%

Table 1: Class Statistics of the Protein Dataset

10-fold stratified cross-validation averaged over 100 repe-
titions and 150 epochs per run. Supervision is included in
the cost function with mixing parameter 0.5.

Unlike the results reported in [6] for SVM which use
one-versus-rest encoding, our setting gives one integrated
clustering model. Depending on the choice of the kernel,
[6] reports errors which approximately add up to 4% for
the leave-one-out error. This result, however, is not com-
parable to our results due to the different error measure. A
1-nearest neighbor classifier yields an accuracy 91.6 for our
setting (k-nearest neighbor for larger k is worse; [6]) which
is comparable to our results. Thereby, continuous updates
improve the results found by median clustering by 3%.

The projections of a Relational SOM with hyperbolic
grid structure and of Relational BNG with non-metric mul-
tidimensional scaling using Kruskal’s normalized stress1
criterion are shown in figure 1 and 2. The neurons are de-
picted according to majority vote. Obviously, the neurons
arrange according to the associated class and a very clear
two-dimensional representation of the data set is obtained.

Chromosome Images
The Copenhagen chromosomes database is a benchmark
from cytogenetics [19]. A set of 4200 human nuclear chro-
mosomes from 22 classes (the X resp. Y sex chromosome
is not considered) are represented by the grey levels of their
images and transferred to strings representing the profile of
the chromosome by the thickness of their silhouettes. The
edit distance is a typical distance measure for two strings
of different length, as described in [13, 22]. In our applica-
tion, distances of two strings are computed using the stan-
dard edit distance whereby substitution costs are given by
the signed difference of the entries and insertion/deletion
costs are given by 4.5 [22].

The algorithms are tested in repeated 2-fold stratified
cross-validation using 85 neurons for Relational BNG and
Relational HSOM (corresponding two three rings), and
a 9x9 grid for the standard Relational SOM. The results

Median Relational Standard Relational
Batch Batch Relational Hyperbolic
NG NG SOM SOM

Accuracy Protein Data set
Mean 89.5 92.4 91.5 91.5
StdDev 1.0 0.9 0.8 1.2
Accuracy Copenhagen Chromosome Database
Mean 88.8 90.7 89.9 89.4
StdDev 1.2 0.5 0.6 0.7

Table 2: Classification accuracy on the Protein Data Set
and Copenhagen Chromosome Database, respectively, for
posterior labeling.

Figure 3: Visualization of the macroarray dataset by Rela-
tional SOM with with hyperbolic grid structure.

presented are the mean accuracy over 10 repetitions per
method and 100 epochs per run (cf. [3]). Supervision is
incorporated using the mixing parameter 0.9. Again, an
improvement of 2% can be observed.

Macroarray Data
Barley is an important crop plant, thus, gene expression
analysis of the temporal development of barley seeds is an
important issue for the derivation of key metabolic pro-
cesses during different stages of growth. Extensive gene
expression measurements at 14 time points from day zero
after flowering to day 26 in steps of two days were car-
ried out using cDNA macroarray technology. High sig-
nal to noise ratios and high reproducibility between two
independently taken experimental series led to a selection
of 4824 genes out of 11786 genes available on the 12k
macroarrays. Thus, a data matrix of 4824 (genes) by 14
(time points) is considered. As common in gene expres-
sion analysis, log2-transformed final expression values are
considered. Coexpression analysis of the available 4824
gene expression time series is required to identify groups
of commonly regulated genes that may have temporal im-
pact on each other. Such a clustering helps to extract can-
didate genes responsible for triggering later events like, for
example, the influence of cell wall degradation factors for
lateral tissue nutrition or subsequent starch accumulation
processes. Fig. 3 shows the arrangement which is obtained
when training a HSOM with 85 neurons for 150 epochs on
these data, thereby using a transformation of Pearson corre-
lation of the expression patterns as distance measure which
better accounts for the overall principled shape as described
in [29]. Obviously, the map organizes the data according to
the evolution of up- and down-regulation of the genes over
time. Due to the hyperbolic structure, the map clearly sep-
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arates opposite shapes and preserves the data topology.

4 Conclusions
The extension of SOM and NG to relational data offers a
very intuitive and simple possibility to project data which
are given by a distance matrix only into a low-dimensional
space, thereby preserving the data topology. The method
is directly based on the cost function of SOM and NG, re-
spectively, thus opening the way towards further extensions
such as supervision as demonstrated in our experiments or
hyperbolic MDS as presented for euclidean data in [31].
Unlike alternative proposals such as [5, 12], relational vi-
sualization maintains the simplicity of original SOM and
NG. The only drawback of the proposed method is given
by the complexity of training, which scales with m2, m be-
ing the number of data, instead of m such as original SOM
and NG. This complexity can be drastically reduced using
either exact methods such as introduced in the article [2],
or low-dimensional approximations of the vectors which
encode the prototypes as proposed in the approach [25].
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