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Abstract— A network model is introduced that al-
lows a multimodal registration of two images. It provides a
model-model registration. The application of the network
in the registration of medical 3D ultrasonic image data is
introduced. Results on artificial and real ultrasound image
data sets are discussed.

1 Introduction
One objective of our research team is to develop an inter-
vention assistant1 for navigation supporting the local tu-
mor therapy in liver tumors. A near real time registration
between a pre-interventional tomographic image and an in-
terventional 3D ultrasound (US) image data set is crucial
for this purpose.

Registration in this field means transforming the coordi-
nate space of one image into the coordinate space of the
other image [1]. After this transformation both images can
be aligned or even merged. This way information in one
image modality can be joined with the information avail-
able in the other. In the given application this means, that
the registration procedure has to merge the data sets accu-
rately enough that the physician can intuitively map radio-
logical information onto pertinent regions in the US.

According to Aylward et al. [2] there are three basic
forms of image registration:

• image-image registration
• image-model registration
• model-model registration

The choice of the procedure depends on features of the im-
age data, e.g. the visibility of anatomical structures.

The current clinical procedure is based on an interactive
landmark based registration of external bony landmarks.
This method is error prone and slow if many adjustments
have to be made. The objective was to develop a registra-
tion method that is more stable, more accurate and faster.

The following considerations influenced the design of
the new registration process:

• Image-image registration is rather slow, because much
basic image information, in the majority of cases
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color- or gray values, is used for the algorithm. This
approach is used for images with similar image fea-
tures, such as similar gray values in same image
modalities. It is not suitable for images of low qual-
ity (noisy and with artifacts), because convergency is
slow and the probability to hang in a local minimum
is high.

• Image-model and model-model registration both use
reduced image information. These approaches are
faster if this reduced information is already available.
These registration methods yield unacceptable results
if information loss is produced by an inadequate re-
duction.

To apply the image-model or model-model principle ap-
proach, a stable and geometrical valid model of one (or
both) of the image data sets has to be produced in a first
step. Therefore only structures can be exploited, that can be
seen in both image data sets and that are stable with respect
to deformation. In our case, the blood vessels are a struc-
ture that is in this sense useful for registration of soft tissue
images. The topological structure defined by the branching
points as well as the radius of the vessels are the two fea-
tures that are not influenced by soft tissue shifts. They are
therefore pivotal features. Other features such as length or
direction are affected by tissue shifts.

The vascular tree models have to be derived from two
different image modalities:

(1) tomographic image data sets (MRI, CT)

(2) 3D Doppler or contrast enhanced ultrasonic image
data sets

The blood vessels are extracted from the tomographic data
using a segmentation-based method [3]. We developed an
extraction method for 3D Doppler or contrast enhanced
ultrasound image data sets. The Vessel Extracting Gas
(VEG) [4] keeps pivotal features of the vessels and sup-
presses noise.



2 Methods

2.1 Background

Conventionally, model-model registration is based on a
graph or tree matching algorithm (see e.g. [5]). The match-
ing is used to calculate the registration transform. These al-
gorithms perform good if the graphs or trees being matched
are very similar in structure as well as in size. An inap-
propriate matching, caused e.g. by trees of different sizes,
leads to bad registration results.

In the given application the following vascular tree mod-
els are extractable:

• Ultrasonic model: partial vascular tree, low degree of
detail

• Tomographic model: complete vascular tree, high de-
gree of detail

In the given context registration methods based on tree
matching are unsuitable because of those differences in size
and degree of detail.

Another common registration method in model-model
registration is the Iterative Closest Points method (see
e.g. [6] and [7]). It iteratively matches two surface mod-
els given as point sets. In one iteration a registration is
calculated that provides an immediate target jump to min-
imize the squared differences. To function properly, the
algorithm needs the given point sets to overlap as much as
possible.

The raw data given in our application are tree models.
When using these tree models, the immediate target jump
in the ICP is likely to get caught in a local minimum. Thus
the idea was to develop an alternative registration method –
called Transform Learning – that carefully approaches the
real transformation in a stepwise manner. Together with a
coarse initial alignment, interactively produced by the in-
terventionalist, this idea reduces the probability to hang in
a local minimum of registration quality.

2.2 Transform Learning

The input of the Transform Learning are two point sets. No
initial correspondences between these points are needed. In
the given application the tomographic vascular tree model
shall be matched to the vascular tree model extracted from
the ultrasound. Therefore the positions of the branching
points of the tomographic vascular tree model are passed to
the method as well as the positions of the branching points
of the ultrasonic vascular tree model.

Transform Learning can additionally consider an initial
alignment between the two point sets. In the medical ap-
plication an interactively realized preregistration is used as
initial alignment.

The learning process iteration consists of two major
steps:

(1) The ”virtual” adaption of the vertices: A training
vector is presented to the network. The nearest vertex
in the net is ”virtually” adapted. The adaption is based
on the ”Winner-takes-all” principle [8] as well as on
the adaption in the Growing Neural Gas by Fritzke
[9]. It is called ”virtual” because the position of the
vertex does not change directly, but the old position
and the ”virtual” new position respectively are used as
corresponding landmarks.

(2) The adaption of the transformation: If the number
of training vectors that were presented is an integer
multiple of the parameter κ, the corresponding land-
marks calculated by the ”virtual” adaptions are passed
to a landmark based registration method. In our case
a simple Least-Square-Estimation was used. The reg-
istration method returns a transformation adjustment
∆T that is appended to the last valid transformation.

This whole iteration is done until the virtual movement of
the vertices falls below a certain specified threshold. In this
case, the last valid transformation is applied to the complete
model or even to the complete image from which the model
has been derived.

2.2.1 Elements of the Transform Learning

The network builds up as follows:

• set of vertices M with m ∈ M has:

– n-dimensional reference vector wc ∈ Rn

• vector for saving old position values Vpo

• vector for saving new position values Vpn

• 4× 4-transformation matrix T
• set P of n-dimensional training or input signals p ∈ P

2.2.2 Process steps of the Transform Learning

Transform Learning algorithm:

(1) Initialize M of the net with the vertices wM in Rn

given in the tomographic model.
(2) If a preregistration is given initialize the transforma-

tion matrix T (t = 0) using the given preregistration
matrix, else initialize T (t = 0) using the identity ma-
trix.

(3) Chose a training vector p from P .
(4) Find the nearest vertex s, with

s = min arg(‖T (t) · ws − p‖),
and add its reference vector multiplied with T (t) to
the vector of old position values Vpo

.
(5) Add the adapted reference vector

wsadaptiert
= T (t) · ws + ∆ws

to the vector of new position values Vpn , where:
∆ws = ε(p− ws)

(6) If the number of presented input signals is an inte-
ger multiple of the parameter κ, calculate the adapted
transformation as follows:
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• Input the vectors of position values to a land-
mark based registration method, which then out-
puts a transformation change ∆T (t).

• Then the adapted Transformation is:
T (t + 1) = ∆T (t) · T (t).

(7) If at least for one reference vector the distance of the
new and the old position exceeds min, increment t
and go back to step 3.

2.3 Determining an appropriate parameter
set

As in any other learning method, the choice of the parame-
ters has a crucial impact on the performance of the method.
Thus the determination of an appropriate parameter set is
very important.

To optimize the parameter set, a test environment2 was
built that permits qualitative evaluations of the results. It
shows image volumes and vascular tree models respec-
tively from the tomographic data as well as from the ultra-
sound data. The image volumes are displayed as derived
surface models with an adjustable threshold (see yellow
model in figure 1(a)). The vascular tree models are dis-
played as combinations of spheres and cylinders (see blue
model in figure 1(a)). It is possible to qualitatively evaluate
the registration by simultaneously displaying the surface
model and the preregistered vessel model as well as the
registered vessel model or by switching between the three
of them.

The parameter optimization tests were first run on artifi-
cial ultrasound image data sets. To create this test data, a
set of vessel tree models was taken, that was extracted from
an MRI of a proband study by MeVis GmbH. The models
are given as sets of vertices and edges with extracted diam-
eters.

From these models artificial 3D Doppler ultrasound vol-
umes were created as follows: The model was transformed
to fit into a volume data set of a fixed size. Then gray val-
ues corresponding to typical Doppler ultrasound gray val-
ues were introduced into the artificial volume data set at
the positions specified by the transformed model. The ar-
tificial data did not include the following characteristics of
normal 3D Doppler or contrast enhanced ultrasound (see
e.g. [10]):

• noise
• speckle
• artifacts

By initializing the Transform Learning approach the fol-
lowing free adjustable parameters have to be known:

• threshold for vessels θ
• number of points presented in one iteration κ
• learning rate for vertices to be adapted ε
• minimal ”virtual” movement of vertices min
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The threshold for the vessels determines the set of vessel
voxels.

To identify a good set of parameters, the procedure was
first started with the following values:

• learning rate ε = 0.2 the value Fritzke suggests for
GNG

• minimal ”virtual” movement min = 0.5 in the range
of desired accuracy

• number of points presented in one iteration κ = 10 to
keep running time short

Varying the parameters influences the performance of
the net as summarized in table 1. The following set of pa-
rameters yielded good results on artificial ultrasound image
data sets checked in the test environment described above:
κ = 30, ε = 0.196, min = 1.1.

parameter too small too large recommended
value

θ – thresh-
old for ves-
sels

much
noise, net
is adapted
towards
noisy areas

few vessel
voxels,
unrepre-
sentative,
inaccurate
especially
on small
vessels

κ – number
of points
presented
in one
iteration

transfor-
mation
jumps

long run-
ning time,
because
calculation
seldom

30.000

ε – learning
rate for ver-
tices to be
adapted

long run-
ning time,
because
movements
are small

0.196

min –
minimal
”virtual”
movement
of the
vertices

long run-
ning time or
oscillation
without
conver-
gency

premature
conver-
gency
with bad
registration

1.100

Table 1: Results of parameter tests for the Transform
Learning approach in test environment
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3 Results
There are two criteria for the evaluation of the registration:

• mean accuracy
• run time performance

Mean accuracy of the registration For artificial ultra-
sonic image data sets this can directly be measured because
the registration transformation is known. For real data this
judgment is not as easy. It can at least be done qualita-
tively. Bad registrations can be characterized by visible de-
viations (see figure 1(a)). Good registrations will be iden-
tified if the structures are congruently aligned with each
other (see figure 1(b)). It is justified to stay with this quali-
tative evaluation because in medical application the results
of the method are used for visual orientation. If the align-
ment of the image data sets presented to the interventional-
ist (see section 1) is in this sense good enough his orienta-
tion in the data sets will improve.

Run time performance of the registration In the ap-
plication described in chapter 1 the calculation has to be
nearly real-time. The Transform Learning was tested on a
PC with Intel Pentium D CPU (two processor kernels with
3.00 GHz resp.), 2.0 GB RAM under Windows XP with
Service Pack 2. The given running times apply to this PC.

3.1 Results on artificial data
First tests were carried out on the artificial data described in
chapter 2.3. To test the performance of Transform Learn-
ing, a transformation was introduced between the original
positioning of the vascular tree and the artificial ultrasonic
image data set. Many different geometrical shifts were
tested, three samples are given here:

(1) a translation of 1 cm towards x-direction, of 0 cm to-
wards y-direction, of 3 cm towards z-direction and a
rotation of 20 around the x-axis, of 20 around the y-
axis, of 20 around the z-axis

(2) no translation and a rotation of 20 around the x-axis,
of 0 around the y-axis, of 10 around the z-axis

(3) translation of 2 cm towards x-direction, of 10 cm to-
wards y-direction, of 0 cm towards z-direction and no
rotation

The registration quality of Transform Learning using dif-
ferent sets of parameters on different geometrical shifts was
evaluated with respect to the criteria mentioned above.

In first tests the parameter set determined in chapter 2.3
was applied.

In the following the results of two selected sets of pa-
rameters will be presented. The selected sets of parameters
are:

(1) optimal set of parameters: ε = 0.2, κ = 30, min = 1
(2) worse set of parameters: ε = 0.2, κ = 30, min = 2

In table 2 the mean accuracy and the running time of
Transform Learning for the geometrical shifts (1)-(3) and
the parameter sets (1)-(2) are shown. The listed running
times include the extraction of the ultrasound model.

set of
param-
eters

trans-
forma-
tion

mean accu-
racy

running
time

1 1 1.125mm 1.766s
1 2 4.441mm 1.578s
1 3 9.883mm 1.609s

2 1 17.504mm 0.578s
2 2 10.515mm 0.609s
2 3 22.113mm 0.531s

Table 2: Examples of mean accuracy and running time for
Transform Learning

The parameter set that yielded best results in the tests
(1) was further tested with different geometrical shifts, that
comprised rotations as well as translations. The running
time of Transform Learning increased with increasing dis-
tance between the two models given whereas the results
were generally good.

Transform Learning in the model-model approach seems
to give very accurate results for geometrical shifts that are
expectable for typical registration problems when radiolog-
ical and ultrasound data have to be merged. The run time
performance is acceptable.

Figure 1 shows the results of Transform Learning with
the best set of parameters (1) and the geometrical shift (1)
on an artificial 3D ultrasonic image data set. Figure 1(a)
gives the geometric shift that was introduced between the
model and the artificial ultrasound image. In figure 1(b) the
registered vascular tree model shown in green lies inside
the set of vessel voxels. In this parts only the yellow surface
of the vessel voxels is seen. The green branches show parts
where the registration has not perfectly aligned the vascular
tree model and the vessel voxels.

3.2 Results on real data

First preliminary tests were run on different real data sets.
The data sets have been 3D ultrasound image (Doppler or
contrast enhanced) and a vascular tree model derived from
a 3D MRI or CT data set. A preregistration between the to-
mographic and the ultrasonic data set had been introduced
by the interventionalist using external bony landmarks.

For first tests the set of parameters that yielded best
results on artificial data was applied. The following set
of parameters gave good results on real ultrasound image
data sets checked in the test environment described above:
ε = 0.2, κ = 30 and min = 3.

An example result yielded with these parameters is
shown in figure 2. The result of the registration method
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(a) model and vessel voxels aligned with geometrical shift (1), blue:
tomographic vascular tree model extracted from a proband MRI, yel-
low: surface of the set of vessel voxels from an artificial 3D ultra-
sonic image data set

(b) model aligned with vessel voxels after Transform Learning regis-
tration, green: registered tomographic vascular tree model extracted
from proband MRI, yellow: surface of the set of vessel voxels from
an artificial ultrasonic image data set

Figure 1: Results of the Transform Learning in model-
model approach

currently used in the clinical application is displayed in
figure 2(a). It took the interventionalist about 15 min to
achieve this interactively driven registration. In figure 2(b)
the result of the Transform Learning is given. This registra-
tion took 20.976s including the extraction of the ultrasonic
vascular tree model when the preregistration was known.

Another example result is given in figure 3. It was cal-
culated using the same parameters as mentioned above.
Again the result of the registration method currently used
in the clinical application is displayed for comparison, see
figure 3(a). This interactive method took about 20 min.
In figure 3(b) the result of the Transform Learning is given.
This registration took 1,312s including the extraction of the
ultrasonic vascular tree model when the preregistration was
known.

The result of Transform Learning is a better alignment of
the structures that results in a better orientation for the in-
terventionalist. The run time performance of the Transform
Learning is acceptable for the intended application.

4 Discussion
According to first results on real data Transform Learning,
as model-model approach in combination with VEG [4], is
able to cope with the requirements of the real world:

• Stability: Compared to conventionally used registra-
tion methods, the whole process is more stable against
the artifacts that are typical, e.g. noise and speckle
[10], because of the previous extraction of a model
from the ultrasound using VEG [4].

• Run time performance: The run time performance was
acceptable throughout all tests.

Further testing on real data is needed. The successful
application of this method for real medical image registra-
tion will require that one fixed parameter set can cope with
most of the data. Otherwise the parameters have to be ad-
justed for every single image. In this case it is important to
know what adjustments have to be made for what kind of
image data. First tests indicate, that the presented set of pa-
rameters yields acceptable results for a wide range of real
data.

The registration quality must be further evaluated in the
medical work flow. Here the important criteria are relevant
improvement compared to the interactive landmark based
registration and a reduction of registration time.
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(a) model aligned with vessel voxels after conventional interac-
tive registration, red: tomographic vascular tree model extracted
from a proband MRI, yellow: surface of the set of vessel voxels
from a proband’s 3D ultrasonic image data set

(b) model and vessel voxels after registration, green: registered
tomographic vascular tree model extracted from a proband MRI,
yellow: surface of the set of vessel voxels from a proband’s 3D
ultrasonic image data set

Figure 2: Results of the Transform Learning
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surface of the set of vessel voxels from a proband 3D ultrasonic image
data set

Figure 3: Results of the Transform Learning
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[4] Dietlind Zühlke, ”Vessel Extracting Gas – Using
self organization in the extraction of vascular trees”,
WSOM07, 2007, accepted.

[5] Arnaud Charnoz and Vincent Agnus and Grgoire Ma-
landain and Luc Soler and Mohamed Tajine, ”Tree
Matching Applied to Vascular System”, Lecture Notes
in Computer Science: Graph-Based Representations in
Pattern Recognition, Volume 3434, 2005.

[6] Paul J. Besl and Neil D. McKay, ”A method for regis-
tration of 3-d shapes” , IEEE Transactions on Pattern
Analysis and Machine Intelligence, 14(2) pp: 239-256,
February 1992.

[7] D.Chetverikov and D. Stepanov, ”The Trimmed Itera-
tive Closest Point Algorithm”, Proc. of 16th Interna-
tional Conference on Pattern Recognition 3, pp. 545-
548, August 2002.

[8] Simon Haykin, Neural Networks: A Comprehensive
Foundation, 2004.

[9] Bernd Fritzke, ”A growing neural gas network learns
topologies”, Advances in Neural Information Process-
ing Systems 7, pp. 625-632, 1995.

[10] F. Forsberg and JB Liu and PN Burns and DA Mer-
ton and BB Goldberg. ”Artefacts in ultrasonic contrast
agent studies” J Ultrasound Med, Vol. 13, pp. 357-365,
1994.

7


