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Abstract— We describe different ways of organiz-2 ~Related work
ing large collections of music with databionic mining tech-
niques. The Emergent Self-Organizing Mapisusedtoclu®.1 Audio features
ter and visualize similar artists and songs. The first method
is the MusicMiner system that utilizes semantic descripMusical similarity of audio files can be modeled using a set
tions learned from low level audio features for each son@f short-term Mel Frequency Cepstral Coefficient (MFCC,
The second method uses tags that have been assigne@-f [24]) vectors summarized with a so-calledg of
songs and artists by the users of the social music platforff@mes[34], i.e. the result of a vector quantization method
Last.fm. For both methods we demonstrate the visualiz& Gaussian mixture models [14, 1, 34]. These model based
tion capabilities of the U-Map. An intuitive browsing of representation cannot easily be used with data mining algo-
large music collections is offered based on the paradigm §fhms requiring many distance calculations and the calcu-
topographic maps. The semantic concepts behind the fdation of a prototype representing the notion of an average

tures enhance the interpretability of the maps. or centroid like SOM, k-Means, or LVQ. Comparing the
Gaussian mixture models of two songs requires calculation

of the pairwise likelihood that each song was generated by

the other song’s model. It also scales badly with the num-

ber of songs, because the pairwise similarities of all songs

need to be stored [2].

The seminal work of Tzanetakis [28, 26] is the foun-

1 Introduction dation for many musical genre classification methods. A
single feature vector is used to describe a song, opening
the problem for many standard machine learning methods.
4\/Iany follow-ups of this approach tried to improve it by us-

This work gives an overview on the two different method . . o
g ng different features and/or different classifiers, €3]

that we have investigated on for the mining and the visy 35
alization of collections of music with Emergent SOM. The®" [35]. ) _ )

MusicMiner [18, 17, 16, 15] uses semantic audio features In [20] several high-dimensional vectorfeature sets.were
learned from a labeling of the songs into timbrally consisCompPared to bag of frames representations measuring the
tent groups, e.g., genres, to visualize a collection of Songratlo of inner to inter class distances of genres, artistd, a
Genres are commonly used to categorize music and the fPUMS-  The vector-based representation with Spectrum

bels are often available or can be retrieved from website§/iStogram performed best. _
More individual labels of music assigned by the listeners 1he above methods all rely on general purpose descrip-
can also be used to organize music. In [12] we collectedPnS of music. The ground truth of genre or timbre cate-
so-called tagged data. Tagging is often refered to as t9@r1es was not used in the construction of the featurg sets,
process of assigning keywords to a special group of olsxcept maybe as gwdelmes for the heuristics used in Fhe
jects and is an important feature of community based séeature design and selection of parameters. In contrast, ti
cial networks like Flickr, YouTube, or Last.fm. We usedPre similarity was modeled in [17] by selecting only few
the user-generated descriptions of Last.fm to generate fdgatures of a large candidate set based on the ground truth
tures that describe songs and artists. For both types of mif.a manually Iab_elgd music collection. The timbre features
sic features clustering and visualization with the Emerge@UtPerformed existing general purpose features on several
Self-organizing Map (ESOM) (Ultsch (1992)) can be useddependent music collections.

to browse collections of music in a novel way and discover Most audio features are extracted from polyphonic audio
emergent structures. data by a sequence of processing steps involving sophisti-

cated signal processing and statistical methods. But only
The remainder of this paper is organized as follows. Firgew like beats per minutare understandable to the typical
some related work is discussed in Section 2. The datasetsisic listener. Much effort has been put into developing
are described in Section 3. The generation of semantic alighly specialized methods using musical and psychologi-
dio feature is explained in Section 4 and the generation @fl background knowledge to derive semantic descriptions
the tag features is described Section 5. In Section 6 weg. of rhythm, harmony, instrumentation, or intensitye(se
present our experimental results and conclude in Section[®] for a summary). The results are, however, often only



understandable to musical experts. The calculation of mgeded by musical style and labelled with information re-
sical similarity by combining the heterogeneous descrigrieved from the Internet.
tions for each song is further challenging in itself. At the album level some authors consider manual collag-
In [5] short-term MFCC features are mapped to more abng [3] of albums. Similar to the MusicRainbow similarity
stract features describing the similarity to a certain gemr of albums could also be determined from the similarity of
artist. This way, short segments of a song can be describeb individual songs. In general a song-based visualizatio
by saying that thegound like countryvith a certain prob- seems to be preferred. In [6] FastMap and multidimen-
ability. The vectors of semantical short term features of sional scaling are used to create a 2D projection of com-
complete song are summarized with mixture models, hovplex descriptions of songs including audio features. PCA
ever, partly destroying the understandability of the nssul is used in [27] to compress audio feature vectors to 3D dis-
In [15] we combined the exhaustive generation of longplays. [23] use small SOM trained with song-level features
term audio features [17] with the semantical modeling o&nd a density visualization to indicate possible clustérs o
[5] to generate interpretable features each of which dsongs. In [19] several SOMs are overlayed to distinguish
scribes the probability of aomplete sondo belong to a different sound properties. In [16] the larger Emergent
certain group of music. This will be described in Section £OM (ESOM) [29, 31] with distance-based visualization
in more detail. are used to provide a more detailed view into the musical
similarity space.

2.2 Tagged-data

To the best of our knowledge there has not been any wok  The Datasets

on clustering music collections based on their tags.Two

recent websites from music information retrieval researchor visualization of music collections with semantic au-

groups aim at collecting tags from users while they listeflio features we collected songs from internet radio sta-

to songs, the Listen Gamend the Major Miner. tions listed onwww. shout cast . com choosing seven
There is some research on clustering and visualizirffistinct genres that are timbrally differe@quntry, Dance

tagged-data in other domains. Flickr provides related taddphop Jazz Metal, Sou| World). 200 songs were used

of their images to a popular tag, grouped into clusters. [4Jom each genre. The dataset was split in two halves one

uses clustering algorithms to find strongly related tags vfor learning the features and one for evaluating the visual-

sualizing them as a graph. [8] propose a method for d@ation.

improved tag cloud and a technique to display these tagsFor the experiments on the tagged data we created a

with clustering based layout. dataset consisting dR00 artists described by tHz50 most

frequently used tags froirast.fmlike rock, pop, metal etc.

2.3 Visualization

Recently, interest in visualization of music collectiorssh 4 Semantic Audio features
been increasing. Song based visualizations offer a more ) ) o )
detailed view into a music collection than album or artistf "€ raw audio data of polyphonic music is not suited for
based methods. In Torrens et al. (2004) disc plots, rectafiléCt analysis with data mining algorithms. It contains
gle plots, and tree maps are used to display the structures/@fious sound impressions that are overlayed in a single
a collection defined by the meta information on the song@r a few correlated) time series. These time series cannot
like genre and artist. be compared directly in a meaningful way. The sound of
[33] display artists on a 2-dimensional map where th@olyphonic music is commonly described by extracting au-
axes can be any pair of mood, genre, year, and temp‘EU.O features on short time windows during which the sound
The artists are placed such that similar artists are close fpassumed to be stationary. We call these descriptur-
each other with a graph drawing algorithm. Self-organizingermfeatures- The down sampled time series of short-term
maps (SOM) [11] are used in [32] with a similarity measurd®ature values can be aggregated to form so-cdded-
based on applying text mining techniques to music review§'m features describing the music. We introduced many
from the Internet. Similar methods are used with hierarchi/@riants of existing short-term features and the consisten
cal clustering to organize artists in [21]. In [10] termsrfro US€ of temporal statistics for long-term feature.s in [17].
web searches are used to label a SOM of artists. In boftf!€ Cross-product of short- and long-term functions leads
cases a limited set of musically related words is used. TH@ @ large amount of audio features describing various as-
MusicRainbow [22] is a circular representation of artistsP€Cts of the sound that V\ge generated with the publically
The similarity of artists is calculated from the similarity @vailable MUSICMINER[18]" software.

of the corresponding songs. The representation is color We used 140 different short-term features by scanning
the music information retrieval literature and adding some

Ihttp://wm | i stengane. org
2http://game. maj or mi ner.com Shttp:// nusi cmi ner. sf. net




variants, e.g., by using different frequency scales imktea ‘ ‘ 5 um l\fletal
etal

of Mel for generating cepstral coefficients. For more de-
tails see [15, 18]. Our 284 long-term features functions
include the empirical moments of the probability distribu-
tion of the feature values as well as many temporal stagistic
summarizing the dynamics of the features within the sound
segment. The crossproduct of short- and long-term feature
functions amounts t@40 x 284 = 39, 760 long-term au-

dio features. The framework is easily capable of producing

several hundred thousand features by activating more-short 0 02 04 06 08 1
and long-term modules. (a) training set
These audio features describe a lot of different aspects
. . . . Il Not Metal
about the music, but they are obtained with complicated [ Metal

mathematical methods and do not offer an understandable
description. Some might be more useful than others and
some might be irrelevant or redundant. We utilize the la-
bels given for a set of songs to learn semantic audio features
by applying regression and feature selection. The goal is to
simplify the feature set by aggregating relatively few rele
vant features taken from the exhaustive candidate set into
new concise, powerful, and understandable features. o R — -

Givenk groups of songs that are timbrally consistent we

. .. . . . (b) test set

useBayesian logistic regressidid] in order to train sparse

models for thesé semantic concepts. Using Laplace prl_Figure 1: Distribution of predictions from the logistic re-

ors for the influence of each feature leads to a built-in feay o\ 40 tained with the Metal genre in the RADIO
ture selection that avoids over-fitting and redundancy a L ta

is equivalent to the lasso method [25].

Figure 1 shows the distribution of the output probabili- ) .
ties for the genre Metal in the RADIO data. For both theVere condensed to a single feature. The resulgng 250 most
training and the disjunct test part of the data, the seymarati requent tags were used for further processing. For the
of Metal from the remaining music is clearly visible. preparation of the tagged data we used a modification of

Figure 2 shows the overview of our proposed process. f}€ Inverse Document Frequency (IDF). Last.fm provides
the training phase a large number of short-term and lon{f2€ Number of peoplét;; = tagcount,;) that have used
term features is generated from the audio data. The regrésSPecific tag for an artigt We scaled:;; to the range of
sion models are trained for each musical aspect resulting i%1]- Then we slightly modified the term frequency to be
semantical features that can be used, e.g., to train a<ladgPre appropriate for tagged data:
fier. For new audio data, only those short-term and long- tfy = tij
term features need to be generated that have been found TS ket

relevant by at least one regression learner. For our daa les. . . .
y g with the denominator being the accumulated frequencies of

than 1’00.0 long-term features were ;ufflClent 0 model tht‘lnﬁe other tags used for a specific artist. The resultibig
7 semantic features well. The resulting semantic features : }
then defined as follows:

can be used for music mining tasks like visualization of
music collections or playlist generation. idf; = log |D|
For more details and experimental results see [15]. >k tik

with | D| being the total number of artists in the collection
. and>_, t;; being the accumulated frequency of this tag in
S Tagged music features all d%:ckuments. All the tags of the Last.fm dataset differ
. a lot in variance but for a meaningful comparison of the
For our study we chose to analyse the data provided Ririaples these variances have to be adjusted. For this pur-
the music community Last.fm, an internet radio featu_ring Pose we used thempirical cumulative distribution func-
music recommendation system. The users can assign @ (ECDF), which is a cumulative probability distribution

to artists/songs and browse the content via tags allowiRgnction with F,, being the proportion of observations in a
them to only listen to songs tagged in a certain way. sample less than or equalto

From the 2500 tags provided by Last.fm we removed the n
ones that do not stand for a certain kind of music genre, F, () = |samples < | _ %ZI (; < )
i=1

like seen-live, favourite albums, etc. Highly correlatags n
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Figure 2: Proposed semantic modeling of music for music mgitésks like genre classification.

wheren is the number of the elements ah@4) being an
indicator function.

6 Visualization of music collections

Clustering can reveal groups of similar music and artists &
within a collection in an unsupervised process. Classifica:
tion can be used to train a model that reproduces a give!
categorization of music on new data. In both cases the re
sult will still be a strict partition of music in form of texat

bels. Projection methods can be used to visualize the struc
tures in the high dimensional data space and offer the user
an additional interface to a music collection apart from tra Figure 3: U-Map of the semantic audio features.
ditional text based lists and trees. There are many methods

that offer a two dimensional projection w.r.t. some qual-

ity measure. Most commonly principal component anal- . .

y)s/is (PCA) preserving total vayrignce gnd muItFi)dimensionzﬁ'1 Semantic Audio Features

scaling (MDS) preserving distances as good as possible are

used. The output of these methods are, however, meralye trained a toroid ESOM with the semantic audio fea-
coordinates in a two dimensional plane. Unless there atares of the testing data using the Databionics ESOM Tools
clearly separated clusters in a dataset it will be hard te re¢Uitsch and Morchen (2005)). Figure 3 shows the result-
ognize groups, see dfichen et al. (2005) for examples.  ing U-Map. The main concentration of songs from the

Emergent SOM offer more visualization capabilitiesSeven genre groups are shown by the labels that were not
than simple low dimensional projections: In addition toused in the ESOM training. In particula Country and Metal
a low dimensional projection preserving the topology ofire very strongly seperated from the other groups by moun-
the input space, the original high dimensional distancas c&2in ranges, indicating large distance in the feature space
be visualized with the canonical U-Matrix (Ultsch (1992))Between Dance and Hiphop as well as Soul and World a
display. This way sharp cluster boundaries can be distigoft transition with less emphasized distances is observed
guished from groups blending into one another. The visi30Nngs with style elements from several genres are found in
alization can be interpreted as height values on top of tBese regions. In Figure 4 we show a close-up of the bound-
usually two dimensional grid of the ESOM, leading to arfry between Rap and Metal. Songs that are borderline be-
intuitive paradigm of a landscape. With proper coloringtween these two very different concepts might be of partic-
the data space can be displayed in form of topographicwar interest to the user. In summary, a successful global
maps, intuitively understandable also by users without scPrganization of the different styles of music was achieved
entific education. Clearly defined borders between clustef@n the testing data that was not used to learn the semantic
where large distances in data space are present, are vis@ldio features. The previously known groups of percep-
ized in the form of high mountains. Smaller intra clustefually different music are displayed in contiguous regions
distances or borders of overlapping clusters form smallé&n the map and the inner cluster similarity of the songs in
hills. Homogeneous regions of data space are placed €se groups is visible when zooming in due to the topol-
flat valleys. To avoid border effects toroid maps should b@gdy preservation of the ESOM.
used. The U-Map is a non-redundant view of the U-Matrix
of such a border-less ESOM [30, 31] than can be used for

visualization. “http://databionic-esom.sf.net
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Figure 5: U-Map of the tagged music data.

6.2 Tagged Music Features

For the tagged music data we trained a>880 emergent

Figure 6: Detailed view of the rock cluster.

somewhat similar songs/artists can be seen as well. We
believe that the direct usage of features that correspond to
semantic concepts offers a better explanation of the maps
than using general purpose audio features [19] possibly
with a subsequent labeling step [10]. In future work we
plan to learn semantic audio features from the user-defined
tags bridging the gap between audio analysis and social
websites. For clustering artists a consensus of audio fea-
tures from several songs of the artists could be used.

self organizing map using 50 epochs. A toroid topology
was used to avoid border effects. Detailed inspection cFQeferences
the map shows a very good conservation of the intercluster

relations between the different music genres. One can o
serve smooth transitions between clusters like metal, rock
indie and pop. In figure 6 we show a detailed view of the
cluster rock. The innercluster relations, e.g. the refetio
between genres like hard rock, classic rock, rock and r
and modern rock are very well preserved. This propert
also holds for the other clusters. An interesting area is the

little cluster metal next to the cluster classic. A precisty

amination revealed the reason for this cluster not being pa
of the big cluster metal. The cluster classic contains tte ol
classic artists like Ludwig van Beethoven on the lower right
edge with a transition to newer artists of the classicalgenr
when moving to the upper left. The neighbouring artists of

the minicluster metal are bands likgocalypticaandThe-

rion which use a lot of classical elements in their songs.

7 Conclusion and future work
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